Giới hạn nào sau đây tồn tại tại \(x_0=-\dfrac{1}{2}\)?
| \(\lim\limits_{x\to-\tfrac{1}{2}}\dfrac{|2x+1|}{2x+1}\) | |
| \(\lim\limits_{x\to-\tfrac{1}{2}}\dfrac{2x+1}{|2x+1|}\) | |
| \(\lim\limits_{x\to-\tfrac{1}{2}}f(x)\) với \(f(x)=\begin{cases}13x+4 &\text{khi }x\leq-\dfrac{1}{2}\\ \dfrac{2x^2-3x-2}{2x+1} &\text{khi }x>-\dfrac{1}{2}\end{cases}\) | |
| \(\lim\limits_{x\to-\tfrac{1}{2}}f(x)\) với \(f(x)=\begin{cases}13x+4 &\text{khi }x\leq-\dfrac{1}{2}\\ \dfrac{2x^2+7x+3}{2x+1} &\text{khi }x>-\dfrac{1}{2}\end{cases}\) |
Giới hạn bên trái của hàm số \(f(x)=\dfrac{|2x+1|}{2x+1}\) tại \(x_0=-\dfrac{1}{2}\) bằng
| \(-1\) | |
| \(1\) | |
| \(-\dfrac{1}{2}\) | |
| Không tồn tại |
Giới hạn của hàm số $$f(x)=\begin{cases}
\dfrac{x^2-4x+3}{|x-3|} &\text{khi }x< 3\\ |3x-11| &\text{khi }x\geq3
\end{cases}$$tại \(x_0=3\) bằng
| \(-2\) | |
| \(2\) | |
| \(3\) | |
| Không tồn tại |
Giới hạn của hàm số $$f(x)=\begin{cases}
\dfrac{x^2-4x+3}{|x-3|} &\text{khi }x>3 \\
|3x-11| &\text{khi }x\leq3
\end{cases}$$tại \(x_0=3\) bằng
| \(-2\) | |
| \(2\) | |
| \(3\) | |
| Không tồn tại |
Giới hạn \(\lim\limits_{x\to3^-}\dfrac{x^2+2x-15}{|x-3|}\) bằng
| \(8\) | |
| \(-\infty\) | |
| \(-8\) | |
| Không tồn tại |
Quan sát lời giải sau, lỗi sai bắt đầu từ dòng nào?
| Dòng 1 | |
| Dòng 2 | |
| Dòng 3 | |
| Dòng 4 |
Tính giới hạn \(\lim\limits_{x\to2^-}\dfrac{|2-x|}{2x^2-5x+2}\).
| \(-\infty\) | |
| \(+\infty\) | |
| \(-\dfrac{1}{3}\) | |
| \(\dfrac{1}{3}\) |
Tính giới hạn \(\lim\limits_{x\to(-2)^+}\dfrac{\left|3x+6\right|}{x+2}\).
| \(-\infty\) | |
| \(3\) | |
| \(+\infty\) | |
| \(0\) |
Cho $\lim\limits_{x\to x_0^+}f(x)=5$, $\lim\limits_{x\to x_0^-}f(x)=-5$. Chọn khẳng định đúng.
| $\lim\limits_{x\to x_0}f(x)=\pm5$ | |
| $\lim\limits_{x\to x_0}f(x)=5$ | |
| $\lim\limits_{x\to x_0}f(x)=-5$ | |
| Không tồn tại $\lim\limits_{x\to x_0}f(x)$ |
Cho hàm số $f(x)=\begin{cases}4x-1\text{ khi }x>2\\ 2x+1\text{ khi }x\le 2\end{cases}$. Tính $\lim\limits_{x\to2^{-}}f(x)$.
| Không tồn tại $\lim\limits_{x\to2^{-}}f(x)$ | |
| $\lim\limits_{x\to2^{-}}f(x)=5$ | |
| $\lim\limits_{x\to2^{-}}f(x)=12$ | |
| $\lim\limits_{x\to2^{-}}f(x)=7$ |
Giới hạn \(\lim\limits_{x\to1}\dfrac{2x-7}{x-1}\) bằng
| \(\dfrac{9}{2}\) | |
| \(-\infty\) | |
| \(+\infty\) | |
| Không tồn tại |
Giới hạn \(\lim\limits_{x\to1^-}\dfrac{2x-7}{x-1}\) bằng
| \(0\) | |
| \(\dfrac{9}{2}\) | |
| \(+\infty\) | |
| \(-\infty\) |
Tìm giá trị của \(a\) để giới hạn \(\lim\limits_{x\to-\tfrac{1}{2}}f(x)\) với $$f(x)=\begin{cases}
13x+a &\text{khi }x\leq-\dfrac{1}{2}\\
\dfrac{2x^2+7x+3}{2x+1} &\text{khi }x>-\dfrac{1}{2}
\end{cases}$$tồn tại?
| \(a=9\) | |
| \(a=18\) | |
| \(a=-4\) | |
| \(a=4\) |
Giới hạn của hàm số $$f(x)=\begin{cases}
2x+5 &\text{khi }x\geq4\\
\dfrac{x^2-16}{x-4} &\text{khi }x<4
\end{cases}$$tại \(x_0=4\) bằng
| \(13\) | |
| \(8\) | |
| \(4\) | |
| Không tồn tại |
Giới hạn của hàm số $$f(x)=\begin{cases}
x^2+x+1 &\text{khi }x\leq1\\
x^2-4 &\text{khi }x>1
\end{cases}$$tại \(x_0=1\) bằng
| \(1\) | |
| \(-3\) | |
| \(3\) | |
| Không tồn tại |
Giới hạn của hàm số $$f(x)=\begin{cases}
x^2+x+1 &\text{khi }x\leq1\\
5x^2-2 &\text{khi }x>1
\end{cases}$$tại \(x_0=1\) bằng
| \(1\) | |
| \(-3\) | |
| \(3\) | |
| Không tồn tại |
Nếu hàm số \(y=f(x)\) thỏa mãn \(\lim\limits_{x\to1^-}f(x)=-\infty\) thì đồ thị hàm số \(y=f(x)\) có đường tiệm cận đứng là đường thẳng có phương trình
| \(x=-1\) | |
| \(x=1\) | |
| \(y=1\) | |
| \(y=-1\) |
Giới hạn \(\lim\limits_{x\to1^+}\dfrac{x+3}{x-1}\) bằng
| \(-\infty\) | |
| \(+\infty\) | |
| \(4\) | |
| Không tồn tại |
Tính giới hạn \(\lim\limits_{x\to-3}\left|\dfrac{-x^2-x+6}{x^2+3x}\right|\).
| \(\dfrac{1}{3}\) | |
| \(\dfrac{2}{3}\) | |
| \(\dfrac{5}{3}\) | |
| \(\dfrac{3}{5}\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\left(|x|^3+2x^2+3|x|\right)\).
| \(0\) | |
| \(+\infty\) | |
| \(1\) | |
| \(-\infty\) |