Cho tứ diện \(ABCD\). Gọi \(M,\,N\) lần lượt là trung điểm của các cạnh \(AD\) và \(BC\); \(G\) là trọng tâm tam giác \(BCD\).

Khi ấy giao điểm của đường thẳng \(MG\) và mặt phẳng \((ABC)\) là
| Điểm \(C\) | |
| Điểm \(N\) | |
| Giao điểm của đường thẳng \(MG\) và đường thẳng \(BC\) | |
| Giao điểm của đường thẳng \(MG\) và đường thẳng \(AN\) |
Cho hình chóp $S.ABC$ có đáy là tam giác vuông tại $B$, $SA$ vuông góc với đáy và $SA=AB$ (tham khảo hình bên).

Góc giữa hai mặt phẳng $(SBC)$ và $(ABC)$ bằng
| $60^{\circ}$ | |
| $30^{\circ}$ | |
| $90^{\circ}$ | |
| $45^{\circ}$ |
Cho tứ diện $ABCD$. Trên $AC$ và $AD$ lần lượt lấy các điểm $M$, $N$ sao cho $MN$ không song song với $CD$. Gọi $P$ là điểm thuộc miền trong của tam giác $BCD$. Hãy tìm
Cho hình chóp $S.ABC$. Trên cạnh $SA$ lấy $M$ sao cho $SA=3SM$, trên cạnh $SC$ lấy điểm $N$ sao cho $SC=2SN$. Điểm $P$ thuộc cạnh $AB$. Hãy tìm
Cho tứ diện $SABC$ có hai điểm $M$, $N$ lần lượt thuộc hai cạnh $SA$, $SB$ và $O$ là điểm nằm trong tam giác $ABC$. Hãy tìm
Cho tứ diện $SABC$ có $M$ là điểm nằm trên tia đối của tia $SA$, $O$ là điểm thuộc miền trong của tam giác $ABC$. Hãy tìm
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ có số đo
| $45^\circ$ | |
| $90^\circ$ | |
| $30^\circ$ | |
| $60^\circ$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a\sqrt{3}$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ có số đo
| $60^\circ$ | |
| $90^\circ$ | |
| $30^\circ$ | |
| $45^\circ$ |
Cho hình chóp $S.ABC$ có $SA\perp AB$ và $SA\perp BC$. Khẳng định nào sau đây không đúng?
| $AB\perp BC$ | |
| $SA\perp AC$ | |
| $SA\perp(ABC)$ | |
| $\big(SA,(ABC)\big)=90^\circ$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ là góc
| $\widehat{SCA}$ | |
| $\widehat{SCB}$ | |
| $\widehat{SAC}$ | |
| $\widehat{ASC}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ là góc
| $\widehat{SBA}$ | |
| $\widehat{SBC}$ | |
| $\widehat{SAB}$ | |
| $\widehat{ASB}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SC$ trên mặt phẳng $(ABC)$ là đường thẳng
| $AC$ | |
| $BC$ | |
| $AB$ | |
| $SC$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SB$ trên mặt phẳng $(ABC)$ là đường thẳng
| $AB$ | |
| $BC$ | |
| $SB$ | |
| $AC$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SA$ và mặt phẳng $(ABC)$ có số đo là
| $90^\circ$ | |
| $0^\circ$ | |
| $180^\circ$ | |
| $90$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Khẳng định nào sau đây không đúng?
| $SB\perp BC$ | |
| $SA\perp AB$ | |
| $SA\perp AC$ | |
| $SA\perp BC$ |
Cho hình chóp đều $S.ABCD$ có chiều cao $a$, $AC=2a$ (tham khảo hình bên).

Khoảng cách từ $B$ đến mặt phẳng $(SCD)$ bằng
| $\dfrac{\sqrt{3}}{3}a$ | |
| $\sqrt{2}a$ | |
| $\dfrac{2\sqrt{3}}{3}a$ | |
| $\dfrac{\sqrt{2}}{2}a$ |
Cho hình chóp $S.ABC$. Gọi $M,\,N,\,P$ lần lượt là trung điểm của $SA,\,SB,\,SC$. Chọn khẳng định đúng.
| $(MNP)\parallel(ABC)$ | |
| $(MNP)\parallel(SAC)$ | |
| $(SMN)\parallel(ABC)$ | |
| $(MNP)\parallel(SBC)$ |
Cho hình chóp $S.ABC$ có tam giác $ABC$ vuông cân tại $A$, $AB=AC=a$ và $SA=SB=SC=a$. Tính $\overrightarrow{AB}\cdot\overrightarrow{SC}$.
| $\overrightarrow{AB}\cdot\overrightarrow{SC}=-\dfrac{a^2}{2}$ | |
| $\overrightarrow{AB}\cdot\overrightarrow{SC}=\dfrac{a^2}{2}$ | |
| $\overrightarrow{AB}\cdot\overrightarrow{SC}=\dfrac{a^2\sqrt{3}}{2}$ | |
| $\overrightarrow{AB}\cdot\overrightarrow{SC}=-\dfrac{a^2\sqrt{3}}{2}$ |
Cho hình chóp $S.ABC$ có $SA=SB=SC=AB=AC=10$, $BC=10\sqrt{2}$. Gọi $M$ là trung điểm của $BC$ và $\alpha$ là góc giữa $AM$ và $SB$. Tính $\cos\alpha$.
| $\cos\alpha=\dfrac{1}{3}$ | |
| $\cos\alpha=\dfrac{2}{5}$ | |
| $\cos\alpha=0$ | |
| $\cos\alpha=\dfrac{2}{3}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông và $SA\perp(ABCD)$.

Khẳng định nào sau đây là đúng?
| $BC\perp(SAB)$ | |
| $BC\perp(SBD)$ | |
| $BC\perp(SCD)$ | |
| $BC\perp(SAC)$ |