Giới hạn \(\lim\dfrac{n\sqrt{n}+1}{n^2+2}\) bằng
| \(\dfrac{3}{2}\) | |
| \(2\) | |
| \(1\) | |
| \(0\) |
Giới hạn \(\lim\dfrac{3n+\sqrt{n^2+n-5}}{-2n}\) bằng
| \(+\infty\) | |
| \(2\) | |
| \(-2\) | |
| \(-\dfrac{3}{2}\) |
Tính \(L=\lim\dfrac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\).
| \(1\) | |
| \(0\) | |
| \(3\) | |
| \(+\infty\) |
Tính giới hạn \(\lim\dfrac{\sqrt{2n+3}}{\sqrt{2n+5}}\).
| \(\dfrac{5}{2}\) | |
| \(\dfrac{5}{7}\) | |
| \(+\infty\) | |
| \(1\) |
Tính giới hạn \(\lim\dfrac{-n^2+2n+1}{\sqrt{3n^4+2n}}\).
| \(-\dfrac{2}{3}\) | |
| \(\dfrac{1}{2}\) | |
| \(-\dfrac{\sqrt{3}}{3}\) | |
| \(-\dfrac{1}{2}\) |
Tính giới hạn \(\lim\dfrac{\sqrt{9n^2-n+1}}{4n-2}\).
| \(\dfrac{2}{3}\) | |
| \(\dfrac{3}{4}\) | |
| \(0\) | |
| \(3\) |
Giá trị của giới hạn \(\lim\dfrac{3n^3-2n+1}{4n^4+2n+1}\) là
| \(+\infty\) | |
| \(0\) | |
| \(\dfrac{2}{7}\) | |
| \(\dfrac{3}{4}\) |
Giá trị của giới hạn \(\lim\dfrac{n+2n^2}{n^3+3n-1}\) bằng
| \(2\) | |
| \(1\) | |
| \(\dfrac{2}{3}\) | |
| \(0\) |
Giá trị của giới hạn \(\lim\dfrac{-3}{4n^2-2n+1}\) là
| \(-\dfrac{3}{4}\) | |
| \(-\infty\) | |
| \(0\) | |
| \(-1\) |
Giới hạn \(\lim\dfrac{\sqrt[3]{8n^3+2n}}{3-n}\) bằng
| \(2\sqrt{2}\) | |
| \(-2\) | |
| \(-8\) | |
| \(-2\sqrt{2}\) |
Tính \(L=\lim\dfrac{3^n-4\cdot2^{n+1}-3}{3\cdot2^n+4^n}\).
| \(0\) | |
| \(1\) | |
| \(-\infty\) | |
| \(+\infty\) |
Tính \(L=\lim\left(\sqrt{n^2+2n-1}-\sqrt{2n^2+n}\right)\).
| \(-1\) | |
| \(1-\sqrt{2}\) | |
| \(-\infty\) | |
| \(+\infty\) |
Biết rằng \(\lim\dfrac{n+\sqrt{n^2+1}}{\sqrt{n^2-n-2}}=a\cdot\sin\dfrac{\pi}{4}+b\), với \(a,\,b\in\mathbb{Z}\). Tính \(S=a^3+b^3\).
| \(S=1\) | |
| \(S=8\) | |
| \(S=0\) | |
| \(S=-1\) |
Dãy số nào sau đây có giới hạn là \(-\infty\)?
| \(u_n=\dfrac{1+2n}{5n+5n^2}\) | |
| \(u_n=\dfrac{n^3+2n-1}{-n+2n^3}\) | |
| \(u_n=\dfrac{2n^2-3n^4}{n^2+2n^3}\) | |
| \(u_n=\dfrac{n^2-2n}{5n+1}\) |
Dãy số nào sau đây có giới hạn là \(+\infty\)?
| \(u_n=\dfrac{1+n^2}{5n+5}\) | |
| \(u_n=\dfrac{n^2-2}{5n+5n^3}\) | |
| \(u_n=\dfrac{n^2-2n}{5n+5n^2}\) | |
| \(u_n=\dfrac{1+2n}{5n+5n^2}\) |
Dãy số nào sau đây có giới hạn bằng \(-\dfrac{1}{3}\)?
| \(u_n=\dfrac{n^2-2n}{3n^2+5}\) | |
| \(u_n=\dfrac{-n^4+2n^3-1}{3n^3+2n^2-1}\) | |
| \(u_n=\dfrac{n^2-3n^3}{9n^3+n^2-1}\) | |
| \(u_n=\dfrac{-n^2+2n-5}{3n^3+4n-2}\) |
Tính giới hạn \(\lim\dfrac{3n-n^4}{4n-5}\).
| \(0\) | |
| \(+\infty\) | |
| \(-\infty\) | |
| \(\dfrac{3}{4}\) |
Tính giới hạn \(\lim\dfrac{2n+3n^3}{4n^2+2n+1}\).
| \(\dfrac{3}{4}\) | |
| \(+\infty\) | |
| \(0\) | |
| \(\dfrac{5}{7}\) |
Tính giới hạn \(\lim\dfrac{n^3-2n}{1-3n^2}\).
| \(-\dfrac{1}{3}\) | |
| \(+\infty\) | |
| \(-\infty\) | |
| \(\dfrac{2}{3}\) |
Tính giới hạn \(L=\lim\dfrac{\sqrt[3]{n}+1}{\sqrt[3]{n+8}}\).
| \(L=\dfrac{1}{2}\) | |
| \(L=1\) | |
| \(L=\dfrac{1}{8}\) | |
| \(L=+\infty\) |