Giới hạn \(\lim\left[3^n-\left(\sqrt{5}\right)^n\right]\) bằng
| \(3\) | |
| \(-\sqrt{5}\) | |
| \(-\infty\) | |
| \(+\infty\) |
Tính giới hạn \(\lim\dfrac{3^n-2\cdot5^{n+1}}{2^{n+1}+5^n}\).
| \(-15\) | |
| \(-10\) | |
| \(10\) | |
| \(15\) |
Tính giới hạn \(\lim\dfrac{2-5^{n+2}}{3^n+2\cdot5^n}\).
| \(-\dfrac{25}{2}\) | |
| \(\dfrac{5}{2}\) | |
| \(1\) | |
| \(-\dfrac{5}{2}\) |
Giới hạn \(\lim\dfrac{3^n-1}{2^n-2\cdot3^n+1}\) bằng
| \(-1\) | |
| \(-\dfrac{1}{2}\) | |
| \(\dfrac{1}{2}\) | |
| \(\dfrac{3}{2}\) |
Tính giới hạn \(\lim\dfrac{\sqrt{n+1}-4}{\sqrt{n+1}+n}\).
| \(1\) | |
| \(0\) | |
| \(-1\) | |
| \(\dfrac{1}{2}\) |
Giới hạn \(\lim\dfrac{n\sqrt{n}+1}{n^2+2}\) bằng
| \(\dfrac{3}{2}\) | |
| \(2\) | |
| \(1\) | |
| \(0\) |
Giá trị của giới hạn \(\lim\dfrac{3n^3-2n+1}{4n^4+2n+1}\) là
| \(+\infty\) | |
| \(0\) | |
| \(\dfrac{2}{7}\) | |
| \(\dfrac{3}{4}\) |
Giá trị của giới hạn \(\lim\dfrac{n+2n^2}{n^3+3n-1}\) bằng
| \(2\) | |
| \(1\) | |
| \(\dfrac{2}{3}\) | |
| \(0\) |
Giá trị của giới hạn \(\lim\dfrac{-3}{4n^2-2n+1}\) là
| \(-\dfrac{3}{4}\) | |
| \(-\infty\) | |
| \(0\) | |
| \(-1\) |
Giới hạn \(\lim\left(9-5n-2n^3\right)\) bằng
| \(-2\) | |
| \(2\) | |
| \(-\infty\) | |
| \(+\infty\) |
Giới hạn \(\lim\dfrac{3n+\sqrt{n^2+n-5}}{-2n}\) bằng
| \(+\infty\) | |
| \(2\) | |
| \(-2\) | |
| \(-\dfrac{3}{2}\) |
Giới hạn \(\lim\dfrac{\sqrt[3]{8n^3+2n}}{3-n}\) bằng
| \(2\sqrt{2}\) | |
| \(-2\) | |
| \(-8\) | |
| \(-2\sqrt{2}\) |
Tính \(L=\lim\dfrac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\).
| \(1\) | |
| \(0\) | |
| \(3\) | |
| \(+\infty\) |
Tính \(L=\lim\left(\sqrt{n^2+2n-1}-\sqrt{2n^2+n}\right)\).
| \(-1\) | |
| \(1-\sqrt{2}\) | |
| \(-\infty\) | |
| \(+\infty\) |
Tính giới hạn \(\lim\dfrac{\sqrt{2n+3}}{\sqrt{2n+5}}\).
| \(\dfrac{5}{2}\) | |
| \(\dfrac{5}{7}\) | |
| \(+\infty\) | |
| \(1\) |
Tính giới hạn \(\lim\dfrac{-n^2+2n+1}{\sqrt{3n^4+2n}}\).
| \(-\dfrac{2}{3}\) | |
| \(\dfrac{1}{2}\) | |
| \(-\dfrac{\sqrt{3}}{3}\) | |
| \(-\dfrac{1}{2}\) |
Tính giới hạn \(\lim\dfrac{\sqrt{9n^2-n+1}}{4n-2}\).
| \(\dfrac{2}{3}\) | |
| \(\dfrac{3}{4}\) | |
| \(0\) | |
| \(3\) |
Tính giới hạn \(L=\lim\left(3n^4+4n^2-n+1\right)\).
| \(L=7\) | |
| \(L=-\infty\) | |
| \(L=3\) | |
| \(L=+\infty\) |
Tính giới hạn \(L=\lim\left(3n^2+5n-3\right)\).
| \(L=3\) | |
| \(L=-\infty\) | |
| \(L=5\) | |
| \(L=+\infty\) |
Dãy số nào sau đây có giới hạn là \(-\infty\)?
| \(u_n=\dfrac{1+2n}{5n+5n^2}\) | |
| \(u_n=\dfrac{n^3+2n-1}{-n+2n^3}\) | |
| \(u_n=\dfrac{2n^2-3n^4}{n^2+2n^3}\) | |
| \(u_n=\dfrac{n^2-2n}{5n+1}\) |