Giới hạn \(\lim\left(9-5n-2n^3\right)\) bằng
| \(-2\) | |
| \(2\) | |
| \(-\infty\) | |
| \(+\infty\) |
Giới hạn \(\lim\left[3^n-\left(\sqrt{5}\right)^n\right]\) bằng
| \(3\) | |
| \(-\sqrt{5}\) | |
| \(-\infty\) | |
| \(+\infty\) |
Tính \(L=\lim\left(\sqrt{n^2+2n-1}-\sqrt{2n^2+n}\right)\).
| \(-1\) | |
| \(1-\sqrt{2}\) | |
| \(-\infty\) | |
| \(+\infty\) |
Tính giới hạn \(L=\lim\left(3n^4+4n^2-n+1\right)\).
| \(L=7\) | |
| \(L=-\infty\) | |
| \(L=3\) | |
| \(L=+\infty\) |
Dãy số nào sau đây có giới hạn là \(-\infty\)?
| \(u_n=\dfrac{1+2n}{5n+5n^2}\) | |
| \(u_n=\dfrac{n^3+2n-1}{-n+2n^3}\) | |
| \(u_n=\dfrac{2n^2-3n^4}{n^2+2n^3}\) | |
| \(u_n=\dfrac{n^2-2n}{5n+1}\) |
Dãy số nào sau đây có giới hạn là \(+\infty\)?
| \(u_n=\dfrac{1+n^2}{5n+5}\) | |
| \(u_n=\dfrac{n^2-2}{5n+5n^3}\) | |
| \(u_n=\dfrac{n^2-2n}{5n+5n^2}\) | |
| \(u_n=\dfrac{1+2n}{5n+5n^2}\) |
Tính giới hạn \(\lim\dfrac{3n-n^4}{4n-5}\).
| \(0\) | |
| \(+\infty\) | |
| \(-\infty\) | |
| \(\dfrac{3}{4}\) |
Tính giới hạn \(\lim\dfrac{2n+3n^3}{4n^2+2n+1}\).
| \(\dfrac{3}{4}\) | |
| \(+\infty\) | |
| \(0\) | |
| \(\dfrac{5}{7}\) |
Tính giới hạn \(\lim\dfrac{n^3-2n}{1-3n^2}\).
| \(-\dfrac{1}{3}\) | |
| \(+\infty\) | |
| \(-\infty\) | |
| \(\dfrac{2}{3}\) |
Giới hạn \(\lim\dfrac{3n+\sqrt{n^2+n-5}}{-2n}\) bằng
| \(+\infty\) | |
| \(2\) | |
| \(-2\) | |
| \(-\dfrac{3}{2}\) |
Giới hạn \(\lim\dfrac{\sqrt[3]{8n^3+2n}}{3-n}\) bằng
| \(2\sqrt{2}\) | |
| \(-2\) | |
| \(-8\) | |
| \(-2\sqrt{2}\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt{1+2x^2}-x\right)\).
| \(0\) | |
| \(+\infty\) | |
| \(\sqrt{2}-1\) | |
| \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\left(2x^3-x^2\right)\).
| \(1\) | |
| \(+\infty\) | |
| \(-1\) | |
| \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\dfrac{2x^3+5x^2-3}{x^2+6x+3}\).
| \(-2\) | |
| \(+\infty\) | |
| \(-\infty\) | |
| \(2\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}x\left(\sqrt{4x^2+7x}+2x\right)\).
| \(4\) | |
| \(-\infty\) | |
| \(6\) | |
| \(+\infty\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt[3]{3x^3-1}+\sqrt{x^2+2}\right)\).
| \(\sqrt[3]{3}+1\) | |
| \(+\infty\) | |
| \(\sqrt[3]{3}-1\) | |
| \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt{x^2+1}+x\right)\).
| \(0\) | |
| \(+\infty\) | |
| \(\sqrt{2}-1\) | |
| \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\left(|x|^3+2x^2+3|x|\right)\).
| \(0\) | |
| \(+\infty\) | |
| \(1\) | |
| \(-\infty\) |
Giới hạn \(\lim\limits_{x\to-\infty}\left(x-x^3+1\right)\) bằng
| \(1\) | |
| \(-\infty\) | |
| \(0\) | |
| \(+\infty\) |
Tính \(L=\lim\dfrac{3^n-4\cdot2^{n+1}-3}{3\cdot2^n+4^n}\).
| \(0\) | |
| \(1\) | |
| \(-\infty\) | |
| \(+\infty\) |