Ngân hàng bài tập

Giáo viên: Huỳnh Phú Sĩ

SS

Cho hàm số $f(x)$, bảng biến thiên của hàm số $f'(x)$ như sau:

Số điểm cực trị của hàm số $f\big(x^2-2x\big)$ là

$9$
$3$
$7$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số bậc bốn $y=f(x)$ có đồ thị như hình vẽ.

Tìm số điểm cực trị của hàm số $g(x)=f\left(x^2\right)$.

$5$
$3$
$7$
$11$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.

Hàm số $g(x)=f(x)-\dfrac{x^3}{3}+x^2-x+2$ có bao nhiêu điểm cực trị?

$1$
$2$
$3$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.

Hàm số $g(x)=2f(x)+x^2$ có bao nhiêu điểm cực trị?

$1$
$2$
$3$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.

Hàm số $g(x)=f(x)+3x$ có bao nhiêu điểm cực trị?

$1$
$2$
$3$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.

Tìm số điểm cực trị của hàm số $g(x)=f(x)-x$.

$1$
$2$
$3$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.

Số điểm cực trị của hàm số $y=f(x)+2x$ là

$1$
$2$
$3$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm các giá trị thực của tham số $m$ để đồ thị hàm số $y=x^4-2mx^2$ có ba điểm cực trị tạo thành một tam giác có diện tích bằng $4\sqrt{2}$.

$m=2$
$m=-2$
$m=\pm2$
$m=32$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=\dfrac{x^4}{4}-(3m+1)x^2+2(m+1)$ với $m$ là tham số thực. Tìm giá trị của $m$ để đồ thị hàm số có ba điểm cực trị tạo thành tam giác có trọng tâm là gốc tọa độ.

$m=-\dfrac{2}{3}$
$m=\dfrac{2}{3}$
$m=-\dfrac{1}{3}$
$m=\dfrac{1}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=\dfrac{9}{8}x^4+3(m-3)x^2+4m+2022$ với $m$ là tham số thực. Tìm giá trị của $m$ để đồ thị hàm số có ba điểm cực trị tạo thành tam giác đều.

$m=-2$
$m=2$
$m=3$
$m=2022$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=x^4-2(m+1)x^2+m^2$ với $m$ là tham số thực. Tìm tất cả các giá trị của $m$ để đồ thị hàm số có $3$ điểm cực trị tạo thành một tam giác vuông.

$m=-1$
$m=0$
$m=1$
$m>-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Gọi $x_1,\,x_2$ là hai điểm cực trị của hàm số $y=4x^3+mx^2-3x$. Tìm các giá trị của tham số $m$ sao cho $x_1+4x_2=0$.

$m=0$
$m=\pm\dfrac{9}{2}$
$m=\pm\dfrac{3}{2}$
$m=\pm\dfrac{1}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Gọi $x_1,\,x_2$ là hai điểm cực trị của hàm số $y=x^3-3mx^2+3\big(m^2-1\big)x-m^3+m$. Tìm các giá trị của tham số $m$ sao cho $x_1^2+x_2^2-x_1x_2=7$.

$m=0$
$m=\pm\dfrac{9}{2}$
$m=\pm\dfrac{1}{2}$
$m=\pm2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Gọi $S$ là tập hợp các giá trị nguyên để hàm số $y=\dfrac{x^3}{3}-(m+1)x^2+(m-2)x+2m-3$ đạt cực trị tại hai điểm $x_1,\,x_2$ thỏa mãn $x_1^2+x_2^2=18$. Tính tổng $P$ của tất cả các giá trị $m$ trong $S$.

$P=-4$
$P=1$
$P=-\dfrac{3}{2}$
$P=-5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm giá trị của tham số $m$ để hàm số $y=x^3-3x^2+mx-1$ có hai điểm cực trị $x_1,\,x_2$ thỏa mãn $x_1^2+x_2^2=6$.

$m=1$
$m=-1$
$m=3$
$m=-3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Viết phương trình đường thẳng đi qua hai điểm cực tiểu của đồ thị hàm số $y=\dfrac{x^4}{4}+\dfrac{x^3}{3}-x^2$.

$y=\dfrac{3}{4}x-\dfrac{7}{6}$
$y=\dfrac{4}{3}x$
$y=-\dfrac{21}{50}x$
$y=-\dfrac{3}{4}x-\dfrac{7}{6}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Đồ thị hàm số $y=x^3-3x^2-9x+1$ có hai điểm cực trị là $A$ và $B$. Điểm nào sau đây thuộc đường thẳng $AB$?

$M(0;-1)$
$Q(-1;10)$
$P(1;0)$
$N(1;-10)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y=-2x^3+3x^2+1$.

$y=x+1$
$y=-x+1$
$y=x-1$
$y=-x-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết đồ thị hàm số $y=x^3-3x+1$ có hai điểm cực trị $A,\,B$. Khi đó đường thẳng $AB$ có phương trình

$y=2x-1$
$y=x-2$
$y=-x+2$
$y=-2x+1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ.

Hàm số $g(x)=\big[f(3-x)\big]^2$ nghịch biến trên khoảng nào trong các khoảng sau?

$(-2;5)$
$(1;2)$
$(2;5)$
$(5;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự