Giới hạn của hàm số $$f(x)=\begin{cases}
\dfrac{x^2-4x+3}{|x-3|} &\text{khi }x>3 \\
|3x-11| &\text{khi }x\leq3
\end{cases}$$tại \(x_0=3\) bằng
| \(-2\) | |
| \(2\) | |
| \(3\) | |
| Không tồn tại |
Giới hạn của hàm số $$f(x)=\begin{cases}
2x+5 &\text{khi }x\geq4\\
\dfrac{x^2-16}{x-4} &\text{khi }x<4
\end{cases}$$tại \(x_0=4\) bằng
| \(13\) | |
| \(8\) | |
| \(4\) | |
| Không tồn tại |
Giới hạn của hàm số $$f(x)=\begin{cases}
x^2+x+1 &\text{khi }x\leq1\\
x^2-4 &\text{khi }x>1
\end{cases}$$tại \(x_0=1\) bằng
| \(1\) | |
| \(-3\) | |
| \(3\) | |
| Không tồn tại |
Giới hạn của hàm số $$f(x)=\begin{cases}
x^2+x+1 &\text{khi }x\leq1\\
5x^2-2 &\text{khi }x>1
\end{cases}$$tại \(x_0=1\) bằng
| \(1\) | |
| \(-3\) | |
| \(3\) | |
| Không tồn tại |
Giới hạn \(\lim\limits_{x\to6}\dfrac{\sqrt{x+3}-3}{x-6}\) bằng
| \(0\) | |
| \(\dfrac{1}{6}\) | |
| \(\dfrac{166}{999}\) | |
| \(+\infty\) |
Giới hạn \(\lim\limits_{x\to2}\dfrac{x^2-3x+2}{x^3-x^2+x-6}\) bằng
| \(0\) | |
| \(\dfrac{1}{7}\) | |
| \(\dfrac{1}{9}\) | |
| Không tồn tại |
Giới hạn \(\lim\limits_{x\to1}\dfrac{x^2-3x+2}{x^2-1}\) bằng
| \(0\) | |
| \(-\dfrac{1}{2}\) | |
| \(+\infty\) | |
| Không tồn tại |
Giới hạn \(\lim\limits_{x\to1}\dfrac{x^2-3x+2}{x^2+1}\) bằng
| \(0\) | |
| \(-\dfrac{1}{2}\) | |
| \(+\infty\) | |
| Không tồn tại |
Giới hạn \(\lim\limits_{x\to-2}\sqrt{x+1}\) bằng
| \(1\) | |
| \(-1\) | |
| \(-2\) | |
| Không tồn tại |
Đồ thị hàm số nào dưới đây có tiệm cận đứng \(x=1\) và đi qua điểm \(A(2;5)\)?
| \(y=\dfrac{2-3x}{1-x}\) | |
| \(y=\dfrac{x+13}{x+1}\) | |
| \(y=\dfrac{2x+1}{x-1}\) | |
| \(y=\dfrac{x+1}{x-1}\) |
Tìm giao điểm của hai đường tiệm cận của đồ thị hàm số \(y=\dfrac{x-2}{x+2}\).
| \(M(2;1)\) | |
| \(N(-2;2)\) | |
| \(P(-2;-2)\) | |
| \(Q(-2;1)\) |
Tọa độ giao điểm của hai đường tiệm cận của đồ thị hàm số \(y=\dfrac{3x-7}{x+2}\) là
| \((2;-3)\) | |
| \((-2;3)\) | |
| \((3;-2)\) | |
| \((-3;2)\) |

Cho hàm số \(y=f(x)\) có bảng biến thiên như hình trên. Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
| \(4\) | |
| \(2\) | |
| \(3\) | |
| \(1\) |

Cho hàm số \(y=f(x)\) có bảng biến thiên như hình trên. Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
| \(3\) | |
| \(4\) | |
| \(1\) | |
| \(2\) |

Cho hàm số \(y=f(x)\) có bảng biến thiên như hình bên. Đồ thị của \(f(x)\) có
| \(2\) đường tiệm cận đứng là \(x=2\) và \(x=-4\) | |
| \(2\) đường tiệm cận ngang là \(y=2\) và \(y=-4\) | |
| \(2\) đường tiệm cận ngang là \(x=2\) và \(x=-4\) | |
| \(2\) đường tiệm cận đứng là \(y=2\) và \(y=-4\) |

Cho hàm số \(y=f(x)\) có bảng biến thiên như hình trên. Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng có phương trình
| \(x=2\) | |
| \(y=2\) | |
| \(x=1\) | |
| \(y=1\) |

Đường cong trong hình trên là đồ thị của hàm số nào dưới đây?
| \(y=-x^3+3x+1\) | |
| \(y=\dfrac{x+1}{x-1}\) | |
| \(y=\dfrac{x-1}{x+1}\) | |
| \(y=x^3-3x-1\) |

Đường cong trong hình trên là đồ thị của hàm số nào dưới đây?
| \(y=\dfrac{2x-1}{x+1}\) | |
| \(y=\dfrac{1-2x}{x+1}\) | |
| \(y=\dfrac{2x+1}{x-1}\) | |
| \(y=\dfrac{2x+1}{x+1}\) |

Cho hàm số \(y=\dfrac{ax-1}{bx+c}\) có đồ thị như hình trên. Tính giá trị biểu thức \(T=a+2b+3c\).
| \(T=1\) | |
| \(T=2\) | |
| \(T=3\) | |
| \(T=4\) |
Biết rằng đồ thị hàm số \(y=\dfrac{(m-2n-3)x+5}{x-m-n}\) nhận hai trục tọa độ làm hai đường tiệm cận. Tính tổng \(S=m^2+n^2-2\).
| \(S=2\) | |
| \(S=0\) | |
| \(S=-1\) | |
| \(S=1\) |