Ngân hàng bài tập

Toán học: Hàm số

S

Cho $F(x)$ là một nguyên hàm của hàm số $f(x)$ trên đoạn $[1;3]$, $F(1)=3$, $F(3)=5$ và $\displaystyle\displaystyle\int\limits_1^3\left(x^4-8x\right)f(x)\mathrm{\,d}x=12$. Tính $I=\displaystyle\displaystyle\int\limits_1^3\left(x^3-2\right)F(x)\mathrm{\,d}x$.

$I=\dfrac{147}{2}$
$I=\dfrac{147}{3}$
$I=-\dfrac{147}{2}$
$I=147$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Biết $F(x)=-\dfrac{1}{x^2}$ là một nguyên hàm của hàm số $y=\dfrac{f(x)}{x}$. Tính $\displaystyle\displaystyle\int f'(x)\ln{x}\mathrm{\,d}x$.

$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=-\dfrac{2\ln{x}}{x^2}+\dfrac{1}{x^2}+C$
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=\dfrac{2\ln{x}}{x^2}+\dfrac{1}{x^2}+C$
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=\dfrac{2\ln{x}}{x^2}-\dfrac{1}{x^2}+C$
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=-\dfrac{2\ln{x}}{x^2}-\dfrac{1}{x^2}+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết $\displaystyle\displaystyle\int\limits_{-1}^1\left(\dfrac{9}{x-3}-\dfrac{7}{x-2}\right)\mathrm{\,d}x=a\ln{3}-b\ln{2}$. Tính giá trị $P=a^2+b^2$.

$P=32$
$P=130$
$P=2$
$P=16$
2 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hình phẳng $A$ giới hạn bởi đồ thị hai hàm số $y=\sqrt{x}$ và $y=\dfrac{1}{2}x$ (phần tô đậm trong hình vẽ).

Tính thể tích $V$ khối tròn xoay tạo thành khi quay hình $A$ xung quanh trục $Ox$.

$V=\dfrac{8}{3}\pi$
$V=\dfrac{8}{5}\pi$
$V=0,533$
$V=0,53\pi$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tính $I=\displaystyle\displaystyle\int\limits_1^3\left(4x^3+3x\right)\mathrm{\,d}x$.

$I=92$
$I=68$
$I=-68$
$I=-92$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết $\displaystyle\displaystyle\int\left(3x^3+5x^4\right)\mathrm{\,d}x=Ax^\alpha+Bx^\beta+C$. Tính $P=A\alpha+B\beta$.

$P=37$
$P=4$
$P=29$
$P=8$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hình phẳng $D$ giới hạn bởi các đường $y=x+2$, $y=0$, $x=1$ và $x=3$. Tính thể tích $V$ của khối tròn xoay tạo thành khi quay hình $D$ xung quanh trục $Ox$.

$V=\dfrac{98}{3}$
$V=8\pi$
$V=\dfrac{98\pi}{3}$
$V=\dfrac{98\pi^2}{3}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết $\displaystyle\displaystyle\int\limits_0^1x\sqrt{x^2+4}\mathrm{\,d}x=\dfrac{1}{a}\left(\sqrt{b^3}-c\right)$. Tính $Q=abc$.

$Q=120$
$Q=15$
$Q=-120$
$Q=40$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tính diện tích $S$ của hình phẳng giới hạn bởi đồ thị hàm số $y=\cos{x}+2$, trục hoành và các đường thẳng $x=0$, $x=\dfrac{\pi}{4}$.

$S=\dfrac{\pi}{2}-\dfrac{\sqrt{2}}{2}$
$S=\dfrac{\pi}{4}+\dfrac{7}{10}$
$S=\dfrac{\pi}{2}+\dfrac{\sqrt{2}}{2}$
$S=\dfrac{\pi}{4}+\dfrac{\sqrt{2}}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Tính $\displaystyle\displaystyle\int\limits3^{2018x}\mathrm{\,d}x$.

$\displaystyle\displaystyle\int\limits3^{2018x} \mathrm{\,d}x=\dfrac{3^{2018x}}{\ln3}+C$
$\displaystyle\displaystyle\int\limits3^{2018x} \mathrm{\,d}x=\dfrac{3^{2018x}}{\ln2018}+C$
$\displaystyle\displaystyle\int\limits3^{2018x} \mathrm{\,d}x=\dfrac{3^{2018x}}{2018\ln3}+C$
$\displaystyle\displaystyle\int\limits3^{2018x} \mathrm{\,d}x=\dfrac{3^{2019x}}{2019}+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=-1$. Tính $F\left(\dfrac{\pi}{6}\right)$.

$F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$
$F\left(\dfrac{\pi}{6}\right)=-\dfrac{\sqrt{3}}{4}-1$
$F\left(\dfrac{\pi}{6}\right)=\sqrt{3}-1$
$F\left(\dfrac{\pi}{6}\right)=-\dfrac{5}{4}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Gọi $D$ là hình phẳng giới hạn bởi đồ thị của hàm số $y=f(x)$ liên tục trên đoạn $[a;b]$, trục hoành và hai đường thẳng $x=a$, $x=b$. Thể tích $V$ của khối tròn xoay tạo thành khi quay hình $D$ xung quanh trục $Ox$ được tính theo công thức nào dưới đây?

$V=\pi^2\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x$
$V=\pi\displaystyle\displaystyle\int\limits_a^b f^2(x)\mathrm{\,d}x$
$V=\left(\pi\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x\right)^2$
$V=2\pi\displaystyle\displaystyle\int\limits_a^b f^2(x)\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hình phẳng $D$ giới hạn bởi đồ thị của hai hàm số $y=f(x), y=g(x)$ (phần tô đậm trong hình vẽ).

Gọi $S$ là diện tích của hình phẳng $D$. Mệnh đề nào dưới đây đúng?

$S=\displaystyle\displaystyle\int\limits_{-3}^0\left[f(x)-g(x)\right]\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{-3}^0\left[g(x)-f(x)\right]\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{-3}^0\left[f(x)+g(x)\right]\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{-3}^1\left[f(x)-g(x)\right]^2\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hàm số $f(x)$ liên tục trên đoạn $[a;b]$ và $F(x)$ là một nguyên hàm của $f(x)$ trên đoạn $[a;b]$. Mệnh đề nào sau đây đúng?

$\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=F(a)-F(b)$
$\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=F(b)-F(a)$
$\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=F(a)+F(b)$
$\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=F'(b)-F'(a)$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\dfrac{1}{2x+3}$ và $F(0)=0$. Tính $F(2)$.

$F(2)=\ln\dfrac{7}{3}$
$F(2)=-\dfrac{1}{2}\ln3$
$F(2)=\dfrac{1}{2}\ln\dfrac{7}{3}$
$F(2)=\ln21$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Biết $\displaystyle\displaystyle\int\limits_1^3f(x)\mathrm{\,d}x=9$ và $\displaystyle\displaystyle\int\limits_1^3g(x)\mathrm{\,d}x=-5$. Tính $K=\displaystyle\displaystyle\int\limits_1^3\left[2f(x)-3g(x)\right]\mathrm{\,d}x$.

$K=3$
$K=33$
$K=4$
$K=14$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Ông An muốn làm một cánh cửa bằng sắt có hình dạng và kích thước như hình vẽ.

Biết rằng đường cong phía trên là một parabol, tứ giác $ABCD$ là hình chữ nhật. Giá của cánh cửa sau khi hoàn thành là $900000$ đồng/m$^2$. Số tiền mà ông An phải trả để làm cánh cửa đó bằng

$9600000$ đồng
$15600000$ đồng
$8160000$ đồng
$8400000$ đồng
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Một vật chuyển động chậm dần đều với vận tốc $v(t)=150-10t$ (m/s), trong đó $t$ là thời gian tính bằng giây kể từ lúc vật bắt đầu chuyển động chậm dần đều. Trong $4$ giây trước khi dừng hẳn, vật di chuyển được một quãng đường bằng

$520$m
$150$m
$80$m
$100$m
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ liên tục, thỏa mãn $f(x)=x\left(1+\dfrac{1}{\sqrt{x}}-f'(x)\right)$, $\forall x\in(0;+\infty)$ và $f(4)=\dfrac{4}{3}$. Giá trị của $\displaystyle\displaystyle\int\limits_{1}^{4}\left(x^2-1\right)f'(x)\mathrm{\,d}x$ bằng

$\dfrac{457}{15}$
$\dfrac{457}{30}$
$-\dfrac{263}{30}$
$-\dfrac{263}{15}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ và $\displaystyle\displaystyle\int\limits_{0}^{4}f(x)\mathrm{\,d}x=2020$. Giá trị của $\displaystyle\displaystyle\int\limits_{0}^{2}xf\left(x^2\right)\mathrm{\,d}x$ bằng

$1008$
$4040$
$1010$
$2019$
1 lời giải Sàng Khôn
Lời giải Tương tự