Ngân hàng bài tập

Toán học: Hàm số

SS

Một khung cửa kính hình parabol với đỉnh $M$ và cạnh đáy $AB$ như minh họa ở hình bên. Biết chi phí để lắp phần kính màu (phần tô đậm trong hình) là $200.000$ đồng/m$^2$ và phần kính trắng còn lại là $150.000$ đồng/m$^2$.

Cho $MN=AB=4$m và $MC=CD=DN$. Hỏi số tiền để lắp kính cho khung cửa như trên gần nhất với số tiền nào dưới đây?

$1.954.000$ đồng
$2.123.000$ đồng
$1.946.000$ đồng
$2.145.000$ đồng
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho hai hàm số $f(x)=mx^3+nx^2+px-\dfrac{5}{2}$ $(m,\,n,\,p\in\mathbb{R})$ và $g(x)=x^2+2x-1$ có đồ thị cắt nhau tại ba điểm có hoành độ lần lượt là $-3$, $-1$, $1$ (tham khảo hình vẽ bên).

Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số $f(x)$ và $g(x)$ bằng

$\dfrac{9}{2}$
$\dfrac{18}{5}$
$4$
$5$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Một thùng rượu vang có dạng hình tròn xoay có hai đáy là hai hình tròn bằng nhau, khoảng cách giữa hai đáy bằng $80$ (cm). Đường sinh của mặt xung quanh thùng là một phần đường tròn có bán kính bằng $60$ (cm) (tham khảo hình minh họa bên).

Hỏi thùng đó có thể đựng bao nhiêu lít rượu? (làm tròn đến hàng đơn vị)

$771$
$385$
$603$
$905$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho hàm số $f(x)$ thỏa $f(1)=\dfrac{1}{3}$ và $f'(x)=\big[xf(x)\big]^2$ với mọi $x\in\mathbb{R}$. Giá trị $f(2)$ bằng

$\dfrac{2}{3}$
$\dfrac{3}{2}$
$\dfrac{16}{3}$
$\dfrac{3}{16}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho hàm số $f(x)$ liên tục trên đoạn $[1;2]$. Biết $f(2)=a$ và $\displaystyle\displaystyle\int\limits_{1}^{2}(x-1)f'(x)\mathrm{\,d}x=b$. Tích phân $\displaystyle\displaystyle\int\limits_{1}^{2}f(x)\mathrm{\,d}x$ có giá trị bằng

$a-b$
$b-a$
$a+b$
$-a-b$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Một ô tô đang chạy với vận tốc $15$ (m/s) thì tăng tốc chuyển động nhanh dần với gia tốc $a=3t-8$ (m/s$^2$), trong đó $t$ là khoảng thời gian tính bằng giây kể từ lúc tăng vận tốc. Hỏi sau $10$ giây tăng tốc, ô tô đi được bao nhiêu mét?

$150$
$180$
$246$
$250$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Nếu $\displaystyle\displaystyle\int\limits_1^3f(x)\mathrm{\,d}x=3$ thì $\displaystyle\displaystyle\int\limits_1^5f\left(\dfrac{x+1}{2}\right)\mathrm{\,d}x$ bằng

$\dfrac{3}{2}$
$3$
$\dfrac{5}{2}$
$6$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho $\displaystyle\displaystyle\int\limits_0^1\dfrac{\mathrm{d}x}{\sqrt{x+1}+\sqrt{x}}=\dfrac{2}{3}\left(\sqrt{a}-b\right)$ với $a$, $b$ là các số dương. Giá trị của biểu thức $T=a+b$ là

$10$
$7$
$6$
$8$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Diện tích hình phẳng giới hạn bởi hai parabol $y=x^2+3x-1$ và $y=-x^2+x+3$ được tô đậm trong hình bên có giá trị bằng

$\displaystyle\displaystyle\int\limits_{-2}^{1}\left(4x+2\right)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\limits_{-2}^{1}\left(2x^2+2x-4\right)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\limits_{-2}^{1}\left(4-2x-2x^2\right)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\limits_{-2}^{1}\left(-4x-2\right)\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Bằng cách đổi biến số $t=1+\ln x$ thì tích phân $\displaystyle\displaystyle\int\limits_1^\mathrm{e}\dfrac{(1+\ln x)^2}{x}\mathrm{\,d}x$ trở thành

$\displaystyle\displaystyle\int\limits_1^\mathrm{e}t^2\mathrm{\,d}t$
$\displaystyle\displaystyle\int\limits_1^2t^2\mathrm{\,d}t$
$\displaystyle\displaystyle\int\limits_1^4t^2\mathrm{\,d}t$
$\displaystyle\displaystyle\int\limits_1^2(1+t)^2\mathrm{\,d}t$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Có bao nhiêu số nguyên $a\in(1;17)$ sao cho $\displaystyle\displaystyle\int\limits_1^5\dfrac{\mathrm{d}x}{2x-1}>\ln\left(\dfrac{a}{2}\right)$?

$4$
$9$
$15$
$0$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hàm số $y=2^x$ có đồ thị là đường cong trong hình bên.

Diện tích $S$ của hình phẳng được tô đậm trong hình bằng

$S=\displaystyle\displaystyle\int\limits_{1}^{2}2^x\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{0}^{2}2^{2x}\mathrm{\,d}x$
$S=\pi\displaystyle\displaystyle\int\limits_{0}^{2}2^x\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{0}^{2}2^x\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết $\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=2$ và $\displaystyle\displaystyle\int\limits_a^b\left[f(x)-2g(x)\right]\mathrm{\,d}x=-8$. Tích phân $\displaystyle\displaystyle\int\limits_a^b g(x)\mathrm{\,d}x$ có giá trị bằng

$12$
$-1$
$-5$
$5$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hàm số $f(x)$ có đạo hàm liên tục trên đoạn $[0;2]$, $f(0)=3$ và $f(2)=0$. Tích phân $\displaystyle\displaystyle\int\limits_0^2f'(x)\mathrm{\,d}x$ có giá trị bằng

$3$
$-3$
$2$
$\dfrac{3}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Hàm số $F(x)=x^2+\sin x$ là nguyên hàm của hàm số nào?

$y=\dfrac{1}{3}x^3+\cos x$
$y=2x+\cos x$
$y=\dfrac{1}{3}x^3-\cos x$
$y=2x-\cos x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Họ nguyên hàm của hàm số $f(x)=x-\mathrm{e}^x$ là

$x^2-\mathrm{e}^{x+1}+C$
$\dfrac{x^2}{2}-\dfrac{\mathrm{e}^{x+1}}{x+1}+C$
$1-\mathrm{e}^x+C$
$\dfrac{x^2}{2}-\mathrm{e}^x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết $\displaystyle\displaystyle\int\limits f(t)\mathrm{\,d}t=t^2+3t+C$. Tính $\displaystyle\displaystyle\int\limits f\left(\sin2x\right)\cos2x\mathrm{\,d}x$.

$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^2x+6\sin{x}+C$
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^22x+6\sin2x+C$
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin^22x+\dfrac{3}{2}\sin2x+C$
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\sin^22x+3\sin2x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hai hàm số $f(x)$, $g(x)$ liên tục trên đoạn $[a;b]$ và $a< c< b$. Mệnh đề nào dưới đây sai?

$\displaystyle\displaystyle\int\limits_a^b\left[f(x)+g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x+\displaystyle\displaystyle\int\limits_a^b g(x)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\limits_a^b k\cdot f(x)\mathrm{\,d}x= k\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x$ với $k$ là hằng số
$\displaystyle\displaystyle\int\limits_a^b \dfrac{f(x)}{g(x)}\mathrm{\,d}x=\dfrac{\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x}{\displaystyle\displaystyle\int\limits_a^b g(x)\mathrm{\,d}x}$
$\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=\displaystyle\displaystyle\int\limits_a^c f(x)\mathrm{\,d}x+\displaystyle\displaystyle\int\limits_c^b f(x)\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hai hàm số $f(x)$ và $g(x)$ liên tục trên $K$ (với $K$ là khoảng hoặc đoạn hoặc nửa khoảng của $\mathbb{R}$). Mệnh đề nào sau đây sai?

$\displaystyle\displaystyle\int\left[f(x)-g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int f(x)\mathrm{\,d}x-\displaystyle\displaystyle\int g(x)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\left[f(x)\cdot g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int f(x)\mathrm{\,d}x\cdot\displaystyle\displaystyle\int g(x)\mathrm{\,d}x$
$\displaystyle\displaystyle\int kf(x)\mathrm{\,d}x=k\displaystyle\displaystyle\int f(x)\mathrm{\,d}x$, với $k$ là hằng số khác $0$
$\displaystyle\displaystyle\int\left[f(x)+g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int f(x)\mathrm{\,d}x+\displaystyle\displaystyle\int g(x)\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Gọi $S$ là diện tích hình phẳng giới hạn bởi đồ thị hai hàm số $y=f(x)$, $y=g(x)$ liên tục trên đoạn $[a;b]$ và các đường thẳng $x=a$, $x=b$. Diện tích $S$ được tính theo công thức nào dưới đây?

$S=\displaystyle\displaystyle\int\limits_a^b\left[g(x)-f(x)\right]\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_a^b|f(x)-g(x)|\mathrm{\,d}x$
$S=\left|\displaystyle\displaystyle\int\limits_a^b\left[f(x)-g(x)\right]\mathrm{\,d}x\right|$
$S=\displaystyle\displaystyle\int\limits_a^b\left[f(x)-g(x)\right]\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự