Ngân hàng bài tập

Toán học: Hàm số

S

Tìm tập hợp giá trị của tham số $m$ để hàm số $y=x^3-mx^2-(m-6)x+1$ đồng biến trên khoảng $(0;4)$.

$(-\infty;6]$
$(-\infty;3]$
$(-\infty;3)$
$[3;6]$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$, có bảng xét dấu đạo hàm như sau:

Hàm số $y=3f(2x-1)-4x^3+15x^2-18x+1$ đồng biến trên khoảng nào dưới đây?

$(3;+\infty)$
$\left(1;\dfrac{3}{2}\right)$
$\left(\dfrac{5}{2};3\right)$
$\left(2;\dfrac{5}{2}\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$. Đồ thị hàm số $f'(x)$ được cho như hình vẽ.

Hàm số $g(x)=4f(x)+x^2-4x+2022$ đồng biến trên khoảng nào sau đây?

$[-2;0]$ và $[2;+\infty)$
$(-\infty;-2]$ và $[0;2]$
$[-2;2]$
$(-\infty;-2]$ và $[2;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $f$ có đạo hàm liên tục trên $(-1;3)$. Bảng biến thiên của hàm số $f'(x)$ như hình vẽ.

Hàm số $g(x)=f\left(1-\dfrac{x}{2}\right)+x$ nghịch biến trên khoảng nào trong các khoảng sau?

$(-4;-2)$
$(2;4)$
$(-2;0)$
$(0;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm bậc bốn $y=f(x)$ có đồ thị $f'(x)$ như hình vẽ bên.

Hàm số $y=f(1-3x)-4$ nghịch biến trên khoảng

$\left(-\dfrac{1}{3};\dfrac{1}{3}\right)$
$(0;2)$
$(-\infty;-1)$
$\left(\dfrac{1}{3};\dfrac{2}{3}\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số bậc bốn $y=f(x)$ thỏa mãn $f(0)=0$. Hàm số $y=f'(x)$ có đồ thị như hình vẽ.

Hàm số $g(x)=\left|2f\big(x^2+x\big)-x^4-2x^3+x^2+2x\right|$ có bao nhiêu cực trị?

$4$
$5$
$6$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số bậc bốn $f(x)=ax^4+bx^3+cx^2+dx+e$ có đồ thị như hình vẽ.

Số nghiệm của phương trình $f\big(f(x)\big)+1=0$ là

$3$
$5$
$4$
$6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hàm số nào dưới dây là hàm số đồng biến trên $\mathbb{R}$?

$y=\left(\sqrt{2}-1\right)^x$
$y=\log_3x$
$y=\left(\dfrac{1}{3}\right)^x$
$y=3^x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi $M$ và $m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y=\dfrac{2x+3}{x-2}$ trên đoạn $[0;1]$. Tính giá trị $M+m$.

$-2$
$\dfrac{7}{2}$
$-\dfrac{13}{2}$
$-\dfrac{17}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=ax^3+bx^2+cx+d$ ($a,\,b,\,c,\,d\in\mathbb{R}$) có đồ thị là đường cong như hình vẽ bên.

Giá trị cực tiểu của hàm số đã cho bằng

$0$
$-1$
$1$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}\setminus\{1\}$ và có bảng biến thiên như sau :

Mệnh đề nào sau đây đúng?

Hàm số đồng biến trên khoảng $\left(2;+\infty\right)$
Hàm số nghịch biến trên khoảng $\left(-\infty;2\right)$
Hàm số nghịch biến trên các khoảng $\left(-\infty;1\right)$ và $\left(1;+\infty\right)$
Hàm số nghịch biến trên $\mathbb{R}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong các hàm số sau, hàm số nào có đồ thị như hình vẽ dưới đây?

$y=x^3+x^2-x+1$
$y=\log_3x$
$y=\sqrt{x}$
$y=\dfrac{x+1}{x-2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tiệm cận ngang của đồ thị hàm số $y=\dfrac{3x+1}{1-x}$ là đường thẳng có phương trình

$y=3$
$y=-1$
$y=1$
$y=-3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập xác định của hàm số $y=x^{-\pi}$ là

$\left(-\infty;0\right)$
$\mathbb{R}\setminus\{0\}$
$\left[0;+\infty\right)$
$\left(0;+\infty\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ có bảng xét dấu đạo hàm như sau:

Số điểm cực đại của hàm số đã cho là

$4$
$-2$
$2$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Điểm nào sau đây thuộc đồ thị hàm số $y=\dfrac{2x+1}{x+1}$?

$M(0;1)$
$N(-1;0)$
$P(2;5)$
$Q(1;0)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ có đạo hàm $f'(x)=(x-7)\left(x^2-9\right)$, $\forall x\in\mathbb{R}$. Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $g(x)=f\left(\left|x^3+5x\right|+m\right)$ có ít nhất $3$ điểm cực trị?

$6$
$7$
$5$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho hàm số $f(x)=x^3+ax^2+bx+c$ với $a,\,b,\,c$ là các số thực. Biết hàm số $g(x)=f(x)+f'(x)+f''(x)$ có hai giá trị cực trị là $-3$ và $6$. Diện tích hình phẳng giới hạn bởi các đường $y=\dfrac{f(x)}{g(x)+6}$ và $y=1$ bằng

$2\ln3$
$\ln3$
$\ln18$
$2\ln2$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Số nghiệm thực phân biệt của phương trình $f\big(f(x)\big)=1$ là

$9$
$3$
$6$
$7$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho hàm số $f(x)=\begin{cases}2x+5 &\text{khi }x\ge1\\ 3x^2+4 &\text{khi }x< 1\end{cases}$. Giả sử $F$ là nguyên hàm của $f$ trên $\mathbb{R}$ thỏa mãn $F(0)=2$. Giá trị của $F(-1)+2F(2)$ bằng

$27$
$29$
$12$
$33$
1 lời giải Sàng Khôn
Lời giải Tương tự