Cho tứ diện $ABCD$. Gọi $N,\,K$ lần lượt là trung điểm các cạnh $BC$ và $CD$, $M$ là điểm trên cạnh $AB$ sao cho $MB=2MA$. Thiết diện của tứ diện $ABCD$ cắt bởi mặt phẳng $(MNK)$ là
| Hình bình hành | |
| Hình thang | |
| Hình chữ nhật | |
| Hình thoi |
Cho hình chóp $S.ABC$. Gọi $M,\,N,\,P$ lần lượt là trung điểm của $SA,\,SB,\,SC$. Chọn khẳng định đúng.
| $(MNP)\parallel(ABC)$ | |
| $(MNP)\parallel(SAC)$ | |
| $(SMN)\parallel(ABC)$ | |
| $(MNP)\parallel(SBC)$ |
Trong không gian, cho tứ diện $ABCD$ có trọng tâm $S$. Gọi $G$ là trọng tâm tam giác $BCD$, $M$ và $N$ lần lượt là trung điểm của $AB$, $CD$. Mệnh đề nào sau đây là sai?
| $S$ là trung điểm đoạn $MN$ | |
| $\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=\overrightarrow{0}$ | |
| $S$ nằm trên đoạn $AG$ sao cho $SA=3SG$ | |
| $\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=\overrightarrow{0}$ |
Trong không gian, cho tứ diện $ABCD$ có $M,\,N$ lần lượt là trung điểm của $AB,\,CD$. Chọn mệnh đề sai trong các mệnh đề sau:
| $\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}$ | |
| $\overrightarrow{NC}+\overrightarrow{NC}=\overrightarrow{0}$ | |
| $\overrightarrow{CA}+\overrightarrow{CB}=2\overrightarrow{CM}$ | |
| $\overrightarrow{AC}+\overrightarrow{AD}=2\overrightarrow{AM}$ |
Cho hình chóp tứ giác $S.ABCD$. Gọi $M$ và $N$ lần lượt là trung điểm của $SA$ và $SC$. Khẳng định nào sau đây đúng?
| $MN\parallel(ABCD)$ | |
| $MN\parallel(SAB)$ | |
| $MN\parallel(SCD)$ | |
| $MN\parallel(SBC)$ |
Cho $4$ điểm không đồng phẳng $A,\,B,\,C,\,D$. Gọi $I,\,K$ lần lượt là trung điểm của $AD$ và $BC$. Giao tuyến của $(IBC)$ và $(KAD)$ là
| $IK$ | |
| $BC$ | |
| $AK$ | |
| $DK$ |
Thiết diện của một tứ diện có thể là
| Tam giác | |
| Tứ giác | |
| Tam giác hoặc tứ giác | |
| Ngũ giác |
Cho tứ diện $ABCD$. Gọi $M$ và $N$ lần lượt là trung điểm của $AC$ và $BC$. $P$ là điểm di động trên đoạn $BD$. Mặt phẳng $(MNP)$ cắt $AD$ tại $Q$.
Cho tứ diện $ABCD$. $M$ là điểm nằm trong tam giác $ABC$, $(\alpha)$ qua $M$ và song song với $AB$ và $CD$. Thiết diện của $ABCD$ cắt bởi $(\alpha)$ là
| Tam giác | |
| Hình bình hành | |
| Hình vuông | |
| Hình chữ nhật |
Cho tứ diện $SABC$. Gọi $D$, $E$, $F$ lần lượt là trung điểm của $AB$, $BC$, $SA$.
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $I$ là trung điểm $SA$. Thiết diện của hình chóp $S.ABCD$ cắt bởi $(IBC)$ là
| Tam giác $IBC$ | |
| Hình thang $IGBC$ ($G$ là trung điểm $SB$) | |
| Hình thang $IJCB$ ($J$ là trung điểm $SD$) | |
| Tứ giác $IBCD$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ có số đo
| $45^\circ$ | |
| $90^\circ$ | |
| $30^\circ$ | |
| $60^\circ$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a\sqrt{3}$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ có số đo
| $60^\circ$ | |
| $90^\circ$ | |
| $30^\circ$ | |
| $45^\circ$ |
Cho hình chóp $S.ABC$ có $SA\perp AB$ và $SA\perp BC$. Khẳng định nào sau đây không đúng?
| $AB\perp BC$ | |
| $SA\perp AC$ | |
| $SA\perp(ABC)$ | |
| $\big(SA,(ABC)\big)=90^\circ$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ là góc
| $\widehat{SCA}$ | |
| $\widehat{SCB}$ | |
| $\widehat{SAC}$ | |
| $\widehat{ASC}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ là góc
| $\widehat{SBA}$ | |
| $\widehat{SBC}$ | |
| $\widehat{SAB}$ | |
| $\widehat{ASB}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SC$ trên mặt phẳng $(ABC)$ là đường thẳng
| $AC$ | |
| $BC$ | |
| $AB$ | |
| $SC$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SB$ trên mặt phẳng $(ABC)$ là đường thẳng
| $AB$ | |
| $BC$ | |
| $SB$ | |
| $AC$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SA$ và mặt phẳng $(ABC)$ có số đo là
| $90^\circ$ | |
| $0^\circ$ | |
| $180^\circ$ | |
| $90$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Khẳng định nào sau đây không đúng?
| $SB\perp BC$ | |
| $SA\perp AB$ | |
| $SA\perp AC$ | |
| $SA\perp BC$ |