Ngân hàng bài tập

Bài tập tương tự

A

Biết rằng $3\mathrm{A}_n^2-4\mathrm{C}_n^3=10$, với $n\in\mathbb{N}^*$, tìm giá trị của $n$.

$n=4$
$n=3$
$n=6$
$n=5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Hệ số của $x^6$ trong khai triển $\left(\dfrac{1}{x}+x^3\right)^{3n+1}$ với $x\neq0$, biết $n$ là số nguyên dương thỏa mãn $3\mathrm{C}_{n+1}^2+n\mathrm{P}_2=4\mathrm{A}_n^2$ là

$120$
$210$
$210x^6$
$120x^6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho số tự nhiên $n$ thỏa mãn $\mathrm{C}_n^7=120$. Tính $\mathrm{A}_n^7$.

$604800$
$720$
$120$
$840$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho đa giác lồi \(n\) cạnh (\(n\geq3\)). Biết rằng đa giác đã cho có \(135\) đường chéo, khi đó \(n\) bằng

\(15\)
\(27\)
\(8\)
\(18\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Chọn ngẫu nhiên \(2\) học sinh từ một tổ có \(9\) học sinh. Biết rằng xác suất chọn được \(2\) học sinh nữ bằng \(\dfrac{5}{18}\), hỏi tổ đó có bao nhiêu học sinh nữ.

\(5\)
\(3\)
\(4\)
\(6\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Phương trình $3^{2x}-(m+1)3^x+m=0$ có đúng một nghiệm khi

$m=0$
$m>0$
$m>0$, $m\neq1$
$m=1$ hoặc $m\leq0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tổng tất cả các nghiệm của phương trình $9^{x^2-2x-7}=3$ là

$2$
$7$
$-7$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập nghiệm của phương trình $\log_2(x-1)+2\log_4(3x+7)=5$ là

$S=\left\{\dfrac{13}{3}\right\}$
$S=\big\{3\big\}$
$S=\big\{-3\big\}$
$S=\left\{3;-\dfrac{13}{3}\right\}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nghiệm của phương trình $\log_2(3x-2)=0$ là

$x=2$
$x=\dfrac{5}{3}$
$x=\dfrac{4}{3}$
$x=1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi $x_1,\,x_2$ là các nghiệm của phương trình $2\log2+2\log(x+2)=\log x+4\log3$. Tích $x_1x_2$ bằng

$\dfrac{15}{2}$
$\dfrac{9}{2}$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập nghiệm của phương trình $\log_2(x-1)+\log_2(x+3)=3$ là

$\big\{-1+2\sqrt{3}\big\}$
$\big\{-1+2\sqrt{3};\,-1-2\sqrt{3}\big\}$
$\big\{-1+\sqrt{10}\big\}$
$\big\{-1+\sqrt{10};\,-1-\sqrt{10}\big\}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho phương trình $9^x-2\cdot3^{x+2}-1=0$. Đặt $t=3^x$, $t>0$, phương trình đã cho trở thành phương trình nào dưới đây?

$2t^2-9t-2=0$
$t^2-9t-1=0$
$t^2-18t-1=0$
$9t^2-2t-9=0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Phương trình $\log_2(x+1)=3$ có nghiệm là

$x=9$
$x=6$
$x=7$
$x=8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Phương trình $3^{1-x}=9$ có nghiệm là

$x=-1$
$x=-2$
$x=1$
$x=2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Có bao nhiêu cặp số nguyên $(x,y)$ với $y\in\big[0;2021^3\big]$ thỏa mãn phương trình $\log_4\left(x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}\right)=\log_2(y-x)$?

$90854$
$90855$
$2021^2$
$2021^2-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Có bao nhiêu giá trị nguyên của tham số $m\in(-10;100)$ để tồn tại các số thực dương $a,\,b,\,x,\,y$ thỏa mãn $a\neq1$, $b\neq1$ và $a^{2x}=b^y=(ab)^{x+my}$?

$0$
$100$
$99$
$98$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Có bao nhiêu số nguyên $x$ sao cho tồn tại duy nhất số thực $y$ thỏa mãn $\log_3\big(2+x+2xy-x^2\big)=\log_{\sqrt{3}}y$?

$5$
$3$
$4$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên.

Số các giá trị nguyên của tham số $m\in(-2019;2023]$ để phương trình $4^{f(x)}-(m-1)2^{f(x)+1}+2m-3=0$ có đúng ba nghiệm là

$2020$
$2019$
$2021$
$2022$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nghiệm của phương trình $\log_2(x-1)=3$ là

$x=10$
$x=9$
$x=8$
$x=7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nghiệm của phương trình $2^{x+1}=4$ là

$x=3$
$x=1$
$x=2$
$x=0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự