Ngân hàng bài tập

Giáo viên: Sàng Khôn

B

Gọi $z,\,w$ là các số phức có điểm biểu diễn lần lượt là $M$ và $N$ trên mặt phẳng $Oxy$ như hình minh họa bên.

Phần ảo của số phức $\dfrac{z}{w}$ là

$\dfrac{14}{17}$
$3$
$-\dfrac{5}{17}$
$-\dfrac{1}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, phương trình chính tắc của đường thẳng $(d)\colon\begin{cases}x=1-2t\\ y=3t\\ z=2+t\end{cases}$ là

$\dfrac{x-1}{1}=\dfrac{y}{3}=\dfrac{z+2}{2}$
$\dfrac{x+1}{1}=\dfrac{y}{3}=\dfrac{z-2}{2}$
$\dfrac{x-1}{-2}=\dfrac{y}{3}=\dfrac{z-2}{1}$
$\dfrac{x+1}{-2}=\dfrac{y}{3}=\dfrac{z+2}{1}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho số phức $z=a+bi$ với $a,\,b$ là các số thực. Khẳng định nào đúng?

$z+\overline{z}=2bi$
$z-\overline{z}=2a$
$z\cdot\overline{z}=a^2-b^2$
$\left|z\right|=\left|\overline{z}\right|$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho hình hộp chữ nhật $OABC.O'A'B'C'$ có ba đỉnh $A,\,C,\,O'$ lần lượt nằm trên ba tia $Ox$, $Oy$, $Oz$ và có ba cạnh $OA=6$, $OC=8$, $OO'=5$ (tham khảo hình minh họa).

Điểm $B'$ có tọa độ là

$(8;6;5)$
$(5;6;8)$
$(6;5;8)$
$(6;8;5)$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho ba số phức $z_1=4-3i$, $z_2=(1+2i)i$, $z_3=\dfrac{1-i}{1+i}$ có điểm biểu diễn trên mặt phẳng $Oxy$ lần lượt là $A$, $B$, $C$. Số phức nào dưới đây có điểm biểu diễn là điểm $D$ thỏa mãn $ABCD$ là hình bình hành?

$6-5i$
$2-5i$
$4-2i$
$-6-4i$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, phương trình đường thẳng đi qua điểm $A(3;1;-1)$ và vuông góc với mặt phẳng $(P)\colon2x-y+2z-5=0$ là

$\dfrac{x+3}{2}=\dfrac{y+1}{-1}=\dfrac{z-1}{2}$
$\dfrac{x-2}{3}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$
$\dfrac{x-3}{2}=\dfrac{y-1}{1}=\dfrac{z+1}{2}$
$\dfrac{x-3}{2}=\dfrac{y-1}{-1}=\dfrac{z+1}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cặp số $(x;y)$ nào dưới đây thỏa đẳng thức $(3x+2yi)+(2+i)=2x-3i$?

$(-2;-1)$
$(-2;-2)$
$(2;-2)$
$(2;-1)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, khoảng cách từ điểm $M(2;-3;0)$ đến mặt phẳng $(P)\colon x+5y-2z+1=0$ bằng

$\dfrac{2\sqrt{30}}{5}$
$12$
$\dfrac{13}{\sqrt{30}}$
$\sqrt{30}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Ký hiệu $z$, $w$ là hai nghiệm phức của phương trình $2x^2-4x+9=0$. Giá trị của $P=\dfrac{1}{z}+\dfrac{1}{w}$ là

$-\dfrac{4}{9}$
$-\dfrac{9}{4}$
$\dfrac{4}{9}$
$\dfrac{9}{8}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hàm số $y=2^x$ có đồ thị là đường cong trong hình bên.

Diện tích $S$ của hình phẳng được tô đậm trong hình bằng

$S=\displaystyle\displaystyle\int\limits_{1}^{2}2^x\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{0}^{2}2^{2x}\mathrm{\,d}x$
$S=\pi\displaystyle\displaystyle\int\limits_{0}^{2}2^x\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{0}^{2}2^x\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết $\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=2$ và $\displaystyle\displaystyle\int\limits_a^b\left[f(x)-2g(x)\right]\mathrm{\,d}x=-8$. Tích phân $\displaystyle\displaystyle\int\limits_a^b g(x)\mathrm{\,d}x$ có giá trị bằng

$12$
$-1$
$-5$
$5$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, điểm $B$ đối xứng với điểm $A(2;1;-3)$ qua mặt phẳng $(Oyz)$ có tọa độ là

$(-2;1;-3)$
$(2;-1;-3)$
$(2;1;-3)$
$(-2;1;3)$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hàm số $f(x)$ có đạo hàm liên tục trên đoạn $[0;2]$, $f(0)=3$ và $f(2)=0$. Tích phân $\displaystyle\displaystyle\int\limits_0^2f'(x)\mathrm{\,d}x$ có giá trị bằng

$3$
$-3$
$2$
$\dfrac{3}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon2x-y+2z-3=0$. Vectơ nào dưới đây không phải là vectơ pháp tuyến của mặt phẳng $(P)$?

$\overrightarrow{n_1}=(2;-1;2)$
$\overrightarrow{n_2}=(-2;1;-2)$
$\overrightarrow{n_3}=(4;-2;4)$
$\overrightarrow{n_4}=(6;3;6)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Điểm nào trong hình bên biểu diễn cho số phức $w=4-i$?

Điểm $M$
Điểm $N$
Điểm $P$
Điểm $Q$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Môđun của số phức $(3-2i)i$ bằng

$\sqrt{5}$
$\sqrt{13}$
$1$
$5$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, vectơ $\overrightarrow{x}=\overrightarrow{i}-3\overrightarrow{j}+2\overrightarrow{k}$ có tọa độ là

$(1;3;2)$
$(1;-3;2)$
$(1;2;3)$
$(0;-3;2)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Hàm số $F(x)=x^2+\sin x$ là nguyên hàm của hàm số nào?

$y=\dfrac{1}{3}x^3+\cos x$
$y=2x+\cos x$
$y=\dfrac{1}{3}x^3-\cos x$
$y=2x-\cos x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, phương trình tham số của đường thẳng qua điểm $A(2;-1;1)$ và có vectơ chỉ phương $\overrightarrow{u}=(1;-2;3)$ là

$\begin{cases}x=1+2t\\ y=-2-t\\ z=3+t\end{cases} (t\in\mathbb{R})$
$\begin{cases}x=2+t\\ y=-1+2t\\ z=1+3t\end{cases} (t\in\mathbb{R})$
$\begin{cases}x=2+t\\ y=-1-2t\\ z=1+3t\end{cases} (t\in\mathbb{R})$
$\begin{cases}x=1-2t\\ y=-2+t\\ z=3-t\end{cases} (t\in\mathbb{R})$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, mặt cầu $(S)\colon x^2+y^2+z^2-4x+6z-2=0$ có bán kính bằng

$\sqrt{11}$
$3\sqrt{6}$
$2\sqrt{3}$
$\sqrt{15}$
1 lời giải Sàng Khôn
Lời giải Tương tự