Ngân hàng bài tập

Giáo viên: Sàng Khôn

C

Trong không gian $Oxyz$, phương trình mặt cầu tâm $I\left(1;2; 3\right)$ và bán kính $R=3$ là

$x^2+y^2+z^2+2x+4y+6z+5=0$
$\left(x+1\right)^2+\left(y+2\right)^2+\left(z+3\right)^2=9$
$\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=9$
$\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=3$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho $A\left(-1;2;3\right)$, $B\left(1;0;2\right)$. Tìm điểm $M$ thỏa mãn $\overrightarrow{AB}=2\cdot\overrightarrow{MA}$?

$M\left(-2;3;\dfrac{7}{2}\right)$
$M\left(-2;3;7\right)$
$M\left(-4;6;7\right)$
$M\left(-2;-3;\dfrac{7}{2}\right)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho hai điểm $A\left(1;2;-4\right)$ và $B\left(-3;2;2\right)$. Toạ độ của $\overrightarrow{AB}$ là

$\left(-2;4;-2\right)$
$\left(-4;0;6\right)$
$\left(4;0;-6\right)$
$\left(-1;2;-1\right)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, các véctơ đơn vị trên các trục $Ox$, $Oy$, $Oz$ lần lượt là $\overrightarrow{i}$, $\overrightarrow{j}$, $\overrightarrow{k}$, cho điểm $M\left(2;-1; 1\right)$. Khẳng định nào sau đây là đúng?

$\overrightarrow{OM}=\overrightarrow{k}+\overrightarrow{j}+2\overrightarrow{i}$
$\overrightarrow{OM}=2\overrightarrow{k}-\overrightarrow{j}+\overrightarrow{i}$
$\overrightarrow{OM}=2\overrightarrow{i}-\overrightarrow{j}+\overrightarrow{k}$
$\overrightarrow{OM}=\overrightarrow{i}+\overrightarrow{j}+2\overrightarrow{k}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{\pi}x^2\cos2x\mathrm{d}x$ bằng cách đặt $\begin{cases}u=x^2\\ \mathrm{d}v=\cos2x\mathrm{d}x\end{cases}$. Mệnh đề nào dưới đây đúng?

$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết $f\left(x\right)$ là hàm số liên tục trên $\mathbb{R}$ và $\displaystyle\displaystyle\int\limits_{0}^{9}f\left(x\right)\mathrm{d}x=9$. Khi đó tính $I=\displaystyle\displaystyle\int\limits_{2}^{5}f\left(3x-6\right)\mathrm{d}x$.

$I=27$
$I=24$
$I=3$
$I=0$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết rằng $\displaystyle\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{d}x=a\ln5+b\ln2$ $\left(a,\,b\in\mathbb{Z}\right)$. Mệnh đề nào sau đây đúng?

$a+2b=0$
$2a-b=0$
$a-b=0$
$a+b=0$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết tích phân $\displaystyle\displaystyle\int\limits_{0}^{1}\dfrac{2x+3}{2-x}\mathrm{d}x=a\ln2+b$ ($a,\,b\in\mathbb{Z}$), giá trị của $a$ bằng

$7$
$2$
$3$
$1$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hàm số $f\left(x\right)$ liên tục trên $\mathbb{R}$ và có $\displaystyle\displaystyle\int\limits_{0}^{1}f\left(x\right)\mathrm{d}x=2$; $\displaystyle\displaystyle\int\limits_{1}^{3}f\left(x\right)\mathrm{d}x=6$. Tính $I=\displaystyle\displaystyle\int\limits_{0}^{3}f\left(x\right)\mathrm{d}x$.

$I=8$
$I=12$
$I=36$
$I=4$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hàm số $y=f\left(x\right)$ thoả mãn điều kiện $f\left(1\right)=12$, $f'\left(x\right)$ liên tục trên $\mathbb{R}$ và $\displaystyle\displaystyle\int\limits_{1}^{4}f'\left(x\right)\mathrm{d}x=17$. Khi đó $f\left(4\right)$ bằng

$5$
$29$
$19$
$9$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hàm số $y=f\left(x\right)$ liên tục trên đoạn $\left[ a;b\right]$. Mệnh đề nào dưới đây sai?

$\displaystyle\displaystyle\int\limits_{a}^{b}f\left(x\right)\mathrm{d}x=\displaystyle\displaystyle\int\limits_{a}^{b}f\left(t\right)\mathrm{d}t$
$\displaystyle\displaystyle\int\limits_{a}^{b}{f\left(x\right)\mathrm{d}x}=-\displaystyle\displaystyle\int\limits_{b}^{a}{f\left(x\right)\mathrm{d}x}$
$\displaystyle\displaystyle\int\limits_{a}^{b}k\mathrm{d}x=k\left(a-b\right)$, $\forall k\in\mathbb{R}$
$\displaystyle\displaystyle\int\limits_{a}^{b}f\left(x\right)\mathrm{d}x=\displaystyle\displaystyle\int\limits_{a}^{c}f\left(x\right)\mathrm{d}x+\displaystyle\displaystyle\int\limits_{c}^{b}f\left(x\right)\mathrm{d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hàm số $y=f\left(x\right)$ có đạo hàm liên tục trên đoạn $\left[ -1;1\right]$ thỏa mãn $\displaystyle\displaystyle\int\limits_{-1}^{1}f'\left(x\right)\mathrm{d}x=5$ và $f\left(-1\right)=4$. Tìm $f\left(1\right)$.

$f\left(1\right)=-1$
$f\left(1\right)=1$
$f\left(1\right)=9$
$f\left(1\right)=-9$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hàm số $f\left(x\right)$ liên tục trên $\left[ 0;10\right]$ thỏa mãn $\displaystyle\displaystyle\int\limits_{0}^{10}f\left(x\right)\mathrm{d}x=7$, $\displaystyle\displaystyle\int\limits_{2}^{6}f\left(x\right)\mathrm{d}x=3$. Tính $P=\displaystyle\displaystyle\int\limits_{0}^{2}f\left(x\right)\mathrm{d}x+\displaystyle\displaystyle\int\limits_{6}^{10}f\left(x\right)\mathrm{d}x$.

$P=4$
$P=-4$
$P=5$
$P=7$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tích phân $f\left(x\right)=\displaystyle\displaystyle\int\limits_{0}^{\tfrac{\pi}{3}}\cos x\mathrm{d}x$ bằng

$\dfrac{1}{2}$
$\dfrac{\sqrt{3}}{2}$
$-\dfrac{\sqrt{3}}{2}$
$-\dfrac{1}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tích phân $I=\displaystyle\displaystyle\int\limits_{\tfrac{\pi}{4}}^{\tfrac{\pi}{3}}\dfrac{\mathrm{d}x}{\sin^2x}$ bằng

$\cot\dfrac{\pi}{3}-\cot\dfrac{\pi}{4}$
$\cot\dfrac{\pi}{3}+\cot\dfrac{\pi}{4}$
$-\cot\dfrac{\pi}{3}+\cot\dfrac{\pi}{4}$
$-\cot\dfrac{\pi}{3}-\cot\dfrac{\pi}{4}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tích phân $\displaystyle\displaystyle\int\limits_{0}^{2}\dfrac{2}{2x+1}\mathrm{d}x$ bằng

$2\ln5$
$\dfrac{1}{2}\ln5$
$\ln5$
$4\ln5$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tích phân $I=\displaystyle\displaystyle\int\limits_{1}^{2}\left(\dfrac{1}{x}+2\right)\mathrm{d}x$ bằng

$I=\ln2+2$
$I=\ln2+1$
$I=\ln2-1$
$I=\ln2+3$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho biết $F\left(x\right)$ là một nguyên hàm của hàm số $f\left(x\right)$. Tìm $I=\displaystyle\displaystyle\int\left[2f\left(x\right)+1\right]\mathrm{d}x$.

$I=2F\left(x\right)+1+C$
$I=2xF\left(x\right)+1+C$
$I=2xF\left(x\right)+x+C$
$I=2F\left(x\right)+x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Họ nguyên hàm của hàm số $f\left(x\right)=x-\sin2x$ là

$\dfrac{x^2}{2}+\cos2x+C$
$\dfrac{x^2}{2}+\dfrac{1}{2}\cos2x+C$
$x^2+\dfrac{1}{2}\cos2x+C$
$\dfrac{x^2}{2}-\dfrac{1}{2}\cos2x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tìm họ nguyên hàm của hàm số $f\left(x\right)=5^x$.

$\displaystyle\displaystyle\int{f\left(x\right)\mathrm{d}x}=5^x+C$
$\displaystyle\displaystyle\int{f\left(x\right)}\mathrm{d}x=5^x\ln5+C$
$\displaystyle\displaystyle\int{f\left(x\right)}\mathrm{d}x=\dfrac{5^x}{\ln5}+C$
$\displaystyle\displaystyle\int{f\left(x\right)\mathrm{d}x}=\dfrac{5^{x+1}}{x+1}+C$
1 lời giải Sàng Khôn
Lời giải Tương tự