Ngân hàng bài tập

Toán học

B

Biết $\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=2$ và $\displaystyle\displaystyle\int\limits_a^b\left[f(x)-2g(x)\right]\mathrm{\,d}x=-8$. Tích phân $\displaystyle\displaystyle\int\limits_a^b g(x)\mathrm{\,d}x$ có giá trị bằng

$12$
$-1$
$-5$
$5$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, điểm $B$ đối xứng với điểm $A(2;1;-3)$ qua mặt phẳng $(Oyz)$ có tọa độ là

$(-2;1;-3)$
$(2;-1;-3)$
$(2;1;-3)$
$(-2;1;3)$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hàm số $f(x)$ có đạo hàm liên tục trên đoạn $[0;2]$, $f(0)=3$ và $f(2)=0$. Tích phân $\displaystyle\displaystyle\int\limits_0^2f'(x)\mathrm{\,d}x$ có giá trị bằng

$3$
$-3$
$2$
$\dfrac{3}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon2x-y+2z-3=0$. Vectơ nào dưới đây không phải là vectơ pháp tuyến của mặt phẳng $(P)$?

$\overrightarrow{n_1}=(2;-1;2)$
$\overrightarrow{n_2}=(-2;1;-2)$
$\overrightarrow{n_3}=(4;-2;4)$
$\overrightarrow{n_4}=(6;3;6)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Điểm nào trong hình bên biểu diễn cho số phức $w=4-i$?

Điểm $M$
Điểm $N$
Điểm $P$
Điểm $Q$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Môđun của số phức $(3-2i)i$ bằng

$\sqrt{5}$
$\sqrt{13}$
$1$
$5$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, vectơ $\overrightarrow{x}=\overrightarrow{i}-3\overrightarrow{j}+2\overrightarrow{k}$ có tọa độ là

$(1;3;2)$
$(1;-3;2)$
$(1;2;3)$
$(0;-3;2)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Hàm số $F(x)=x^2+\sin x$ là nguyên hàm của hàm số nào?

$y=\dfrac{1}{3}x^3+\cos x$
$y=2x+\cos x$
$y=\dfrac{1}{3}x^3-\cos x$
$y=2x-\cos x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, phương trình tham số của đường thẳng qua điểm $A(2;-1;1)$ và có vectơ chỉ phương $\overrightarrow{u}=(1;-2;3)$ là

$\begin{cases}x=1+2t\\ y=-2-t\\ z=3+t\end{cases} (t\in\mathbb{R})$
$\begin{cases}x=2+t\\ y=-1+2t\\ z=1+3t\end{cases} (t\in\mathbb{R})$
$\begin{cases}x=2+t\\ y=-1-2t\\ z=1+3t\end{cases} (t\in\mathbb{R})$
$\begin{cases}x=1-2t\\ y=-2+t\\ z=3-t\end{cases} (t\in\mathbb{R})$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, mặt cầu $(S)\colon x^2+y^2+z^2-4x+6z-2=0$ có bán kính bằng

$\sqrt{11}$
$3\sqrt{6}$
$2\sqrt{3}$
$\sqrt{15}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Họ nguyên hàm của hàm số $f(x)=x-\mathrm{e}^x$ là

$x^2-\mathrm{e}^{x+1}+C$
$\dfrac{x^2}{2}-\dfrac{\mathrm{e}^{x+1}}{x+1}+C$
$1-\mathrm{e}^x+C$
$\dfrac{x^2}{2}-\mathrm{e}^x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Số phức có phần thực bằng $3$ và phần ảo bằng $2$ là

$3+2i$
$2+3i$
$2-3i$
$3-2i$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho hai điểm $A(1;1;-2)$ và $B(3;0;1)$. Vectơ $\overrightarrow{AB}$ có tọa độ là

$(4;1;-1)$
$\left(2;\dfrac{1}{2};-\dfrac{1}{2}\right)$
$(2;-1;3)$
$(-2;1;-3)$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong mặt phẳng tọa độ, tìm tập hợp các điểm biểu diễn số phức $z$ thỏa mãn $\dfrac{z+4i}{z-4i}$ là một số thực dương.

Trục $Oy$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $4i$, $J$ là điểm biểu diễn $-4i$)
Trục $Oy$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $2i$, $J$ là điểm biểu diễn $-2i$)
Đoạn $IJ$ (với $I$ là điểm biểu diễn $4i$, $J$ là điểm biểu diễn $-4i$)
Trục $Ox$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $4$, $J$ là điểm biểu diễn $-4$)
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Tính môđun của số phức $z$ thỏa mãn $(1+i)z|z|-1=(i-2)|z|$.

$|z|=1$
$|z|=4$
$|z|=2$
$|z|=3$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Gọi $z_1$ và $z_2$ là hai nghiệm phức của phương trình $z^2-2z+5=0$, trong đó $z_2$ có phần ảo âm. Tìm phần ảo $b$ của số phức $w=\left[\left(z_1-i\right)\left(z_2+2i\right)\right]^{2018}$.

$b=2^{1009}$
$b=2^{2017}$
$b=-2^{2018}$
$b=2^{2018}$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho mặt cầu $(S)\colon x^2+y^2+z^2+4x-8y+2z+1=0$ và mặt phẳng $(P)\colon2x+y+3z-3=0$. Biết $(P)$ cắt $(S)$ theo giao tuyến là một đường tròn, tìm tọa độ tâm $I$ và bán kính $r$ của đường tròn đó.

$I\left(\dfrac{8}{7};\dfrac{25}{7};-\dfrac{16}{7}\right)$ và $r=\dfrac{2\sqrt{854}}{3}$
$I\left(\dfrac{8}{7};-\dfrac{31}{7};-\dfrac{2}{7}\right)$ và $r=\dfrac{\sqrt{854}}{5}$
$I\left(-\dfrac{8}{7};\dfrac{31}{7};\dfrac{2}{7}\right)$ và $r=\dfrac{\sqrt{854}}{7}$
$I\left(-\dfrac{8}{7};\dfrac{31}{7};\dfrac{2}{7}\right)$ và $r=\dfrac{\sqrt{854}}{3}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết $\displaystyle\displaystyle\int\limits f(t)\mathrm{\,d}t=t^2+3t+C$. Tính $\displaystyle\displaystyle\int\limits f\left(\sin2x\right)\cos2x\mathrm{\,d}x$.

$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^2x+6\sin{x}+C$
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^22x+6\sin2x+C$
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin^22x+\dfrac{3}{2}\sin2x+C$
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\sin^22x+3\sin2x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hai hàm số $f(x)$, $g(x)$ liên tục trên đoạn $[a;b]$ và $a< c< b$. Mệnh đề nào dưới đây sai?

$\displaystyle\displaystyle\int\limits_a^b\left[f(x)+g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x+\displaystyle\displaystyle\int\limits_a^b g(x)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\limits_a^b k\cdot f(x)\mathrm{\,d}x= k\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x$ với $k$ là hằng số
$\displaystyle\displaystyle\int\limits_a^b \dfrac{f(x)}{g(x)}\mathrm{\,d}x=\dfrac{\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x}{\displaystyle\displaystyle\int\limits_a^b g(x)\mathrm{\,d}x}$
$\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=\displaystyle\displaystyle\int\limits_a^c f(x)\mathrm{\,d}x+\displaystyle\displaystyle\int\limits_c^b f(x)\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hai hàm số $f(x)$ và $g(x)$ liên tục trên $K$ (với $K$ là khoảng hoặc đoạn hoặc nửa khoảng của $\mathbb{R}$). Mệnh đề nào sau đây sai?

$\displaystyle\displaystyle\int\left[f(x)-g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int f(x)\mathrm{\,d}x-\displaystyle\displaystyle\int g(x)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\left[f(x)\cdot g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int f(x)\mathrm{\,d}x\cdot\displaystyle\displaystyle\int g(x)\mathrm{\,d}x$
$\displaystyle\displaystyle\int kf(x)\mathrm{\,d}x=k\displaystyle\displaystyle\int f(x)\mathrm{\,d}x$, với $k$ là hằng số khác $0$
$\displaystyle\displaystyle\int\left[f(x)+g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int f(x)\mathrm{\,d}x+\displaystyle\displaystyle\int g(x)\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự