Cho dãy số hữu hạn \(\left(u_n\right)\) được xác định như sau: \(u_1=-2\), \(u_2=0\), \(u_3=2\), \(u_4=4\), \(u_5=6\). Biết \(u_1\) là số hạng đầu và \(u_5\) là số hạng cuối. Số hạng tổng quát của dãy số trên là
| \(u_n=n-2\) | |
| \(u_n=-2n\) | |
| \(u_n=2n-4\) | |
| \(u_n=-2(n+1)\) |
Cho cấp số cộng \(\left(u_n\right)\) biết \(u_n=3-5n\). Tìm công sai \(d\) của \(\left(u_n\right)\).
| \(d=3\) | |
| \(d=-5\) | |
| \(d=-3\) | |
| \(d=5\) |
Một cấp số cộng có \(8\) số hạng. Số hạng đầu là \(5\), số hạng thứ tám là \(40\). Khi đó công sai của cấp số cộng đó là
| \(d=4\) | |
| \(d=5\) | |
| \(d=7\) | |
| \(d=6\) |
Cho cấp số cộng \(\left(u_n\right)\) có \(u_n=-1\) và \(u_{n+1}=8\). Tính công sai \(d\) của \(\left(u_n\right)\).
| \(d=-9\) | |
| \(d=7\) | |
| \(d=-7\) | |
| \(d=9\) |
Dãy số nào sau đây là cấp số cộng?
| \(1,\,3,\,5,\,7,\,9\) | |
| \(2,\,4,\,5,\,6,\,7\) | |
| \(1,\,2,\,4,\,8,\,16\) | |
| \(3,\,-6,\,12,\,-24\) |
Trong các dãy số dưới đây, dãy số nào là cấp số cộng?
| \(2,\,8,\,32\) | |
| \(3,\,7,\,11,\,16\) | |
| \(\left(u_n\right)\colon u_n=4+3n\) | |
| \(\left(v_n\right)\colon v_n=n^3\) |

Đường cong ở hình trên là đồ thị của hàm số \(f(x)=ax^4+bx^2+c\); với \(x\) là biến số thực; \(a,\,b,\,c\) là ba hằng số thực, \(a\neq0\). Gọi \(k\) là số nghiệm thực của phương trình \(f(x)=1\). Mệnh đề nào dưới đây đúng?
| \(abc<0\) và \(k=2\) | |
| \(abc>0\) và \(k=3\) | |
| \(abc<0\) và \(k=0\) | |
| \(abc>0\) và \(k=2\) |
Tập hợp các tham số thực \(m\) để đồ thị của hàm số \(y=x^3+(m-4)x+2m\) cắt trục hoành tại ba điểm phân biệt là
| \((-\infty;1]\setminus\{-8\}\) | |
| \((-\infty;1)\setminus\{-8\}\) | |
| \((-\infty;1]\) | |
| \((-\infty;1)\) |

Cho hàm số \(y=f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình trên. Số nghiệm thực của phương trình \(f(x)=1\) bằng
| \(2\) | |
| \(3\) | |
| \(1\) | |
| \(0\) |

Đường cong ở hình trên là đồ thị của hàm số \(y=ax^3+bx^2+c\); với \(x\) là biến số thực; \(a,\,b,\,c\) là ba hằng số thực, \(a\neq0\). Mệnh đề nào dưới đây đúng?
| \(b<0< a\) và \(c<0\) | |
| \(a<0< b\) và \(c<0\) | |
| \(a< b<0\) và \(c<0\) | |
| \(a<0< b\) và \(c>0\) |
Số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\sqrt{x+1}-1}{x^3-4x}\) lần lượt là
| \(3\) và \(1\) | |
| \(1\) và \(1\) | |
| \(2\) và \(1\) | |
| \(1\) và \(0\) |
Số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\dfrac{2x^2+2x}{x^2+2x+1}\) lần lượt là
| \(0\) và \(2\) | |
| \(0\) và \(1\) | |
| \(1\) và \(2\) | |
| \(1\) và \(1\) |
Tiệm cận ngang của đồ thị hàm số \(y=\sqrt{4x^2-8x+5}+2x\) có phương trình là
| \(y=4\) | |
| \(y=-2\) | |
| \(y=2\) | |
| \(y=-4\) |
Cho hàm số \(y=x^4+8x^2+m\) có giá trị nhỏ nhất trên \([1;3]\) bằng \(6\). Tham số thực \(m\) bằng
| \(-42\) | |
| \(6\) | |
| \(15\) | |
| \(-3\) |
Cho hàm số \(y=\dfrac{x-m}{x+1}\) thỏa \(\min\limits_{[0;1]}y+\max\limits_{[0;1]}y=5\). Tham số thực \(m\) thuộc tập nào dưới đây?
| \([2;4)\) | |
| \((-\infty;2)\) | |
| \([4;6)\) | |
| \([6;+\infty)\) |
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=\dfrac{1-x}{x+1}\) trên \([-3;-2]\) lần lượt bằng
| \(2\) và \(-3\) | |
| \(-3\) và \(2\) | |
| \(3\) và \(-2\) | |
| \(-2\) và \(-3\) |
Số giá trị nguyên của tham số \(m\) để hàm số $$y=x^3-(m+2)x^2+\left(m^2+2m\right)x$$có cực trị là
| \(2\) | |
| \(1\) | |
| \(3\) | |
| \(0\) |

Cho hàm số \(y=f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình trên. Số điểm cực trị của hàm số \(y=\left|f(x-2)-3\right|\) bằng
| \(5\) | |
| \(4\) | |
| \(6\) | |
| \(3\) |
Hàm số \(y=x^3+mx^2\) đạt cực đại tại \(x=-2\) khi và chỉ khi giá trị của tham số thực \(m\) bằng
| \(-3\) | |
| \(3\) | |
| \(-12\) | |
| \(12\) |
Số điểm cực trị của hàm số \(f(x)\) có đạo hàm \(f'(x)=x(x-1)^2\), \(\forall x\in\mathbb{R}\) là
| \(1\) | |
| \(2\) | |
| \(3\) | |
| \(4\) |