Ngân hàng bài tập

Toán học

C

Tập xác định của hàm số \(y=\log_2x\) là

\([0;+\infty)\)
\((-\infty;+\infty)\)
\((0;+\infty)\)
\([2;+\infty)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Thể tích của khối lập phương cạnh \(2\) bằng

\(6\)
\(8\)
\(4\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nghiệm của phương trình \(3^{x-1}=27\) là

\(x=4\)
\(x=3\)
\(x=2\)
\(x=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho cấp số cộng \(\left(u_n\right)\) với \(u_1=3\) và \(u_2=9\). Công sai của cấp số cộng đã cho bằng

\(6\)
\(3\)
\(12\)
\(-3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Có bao nhiêu cách chọn hai học sinh từ một nhóm gồm \(10\) học sinh?

\(\mathrm{C}_{10}^2\)
\(\mathrm{A}_{10}^2\)
\(10^2\)
\(2^{10}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon x+y-z-1=0\) và điểm \(A(1;0;0)\in(P)\). Đường thẳng \(\Delta\) đi qua \(A\) nằm trong \((P)\) và tạo với trục \(Oz\) một góc nhỏ nhất. Gọi \(M\left(x_0;y_0;z_0\right)\) là giao điểm của đường thẳng \(\Delta\) với mặt phẳng \((Q)\colon2x+y-2z+1=0\). Tổng \(S=x_0+y_0+z_0\) bằng

\(-2\)
\(13\)
\(-5\)
\(12\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho điểm \(M(1;0;4)\) và đường thẳng \(d\colon\dfrac{x}{1}=\dfrac{y-1}{-1}=\dfrac{x+1}{2}\). Tìm hình chiếu vuông góc \(H\) của \(M\) lên đường thẳng \(d\).

\(H(2;-1;3)\)
\(H(1;0;1)\)
\(H(-2;3;0)\)
\(H(0;1;-1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho \(d\) là đường thẳng đi qua \(A(1;2;3)\) và vuông góc với mặt phẳng \((\alpha)\colon4x+3y-7z+1=0\). Phương trình tham số của đường thẳng \(d\) là

\(\begin{cases}x=1+3t\\ y=2-4t\\ z=3-7t\end{cases}\)
\(\begin{cases}x=1+4t\\ y=2+3t\\ z=3-7t\end{cases}\)
\(\begin{cases}x=-1+8t\\ y=-2+6t\\ z=-3-14t\end{cases}\)
\(\begin{cases}x=-1+4t\\ y=-2+3t\\ z=-3-7t\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), phương trình đường thẳng đi qua \(A(1;-2;3)\) và có vectơ chỉ phương \(\overrightarrow{u}=(2;-1;-2)\) là

\(\dfrac{x+1}{2}=\dfrac{y-2}{-1}=\dfrac{z+3}{-2}\)
\(\dfrac{x-1}{-2}=\dfrac{y+2}{-1}=\dfrac{z-3}{2}\)
\(\dfrac{x-1}{4}=\dfrac{y+2}{-2}=\dfrac{z-3}{-4}\)
\(\dfrac{x-1}{-2}=\dfrac{y+2}{1}=\dfrac{z-3}{-2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), điểm nào dưới đây thuộc đường thẳng \(d\colon\dfrac{x+2}{1}=\dfrac{y-1}{1}=\dfrac{z+2}{2}\)?

\(Q(-2;1;-2)\)
\(M(-2;-2;1)\)
\(N(2;-1;2)\)
\(P(1;1;2)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), mặt phẳng \((P)\colon x+\sqrt{2}y-z+3=0\) cắt mặt cầu \((S)\colon x^2+y^2+z^2=5\) theo giao tuyến là đường tròn có diện tích là

\(\dfrac{7\pi}{4}\)
\(\dfrac{15\pi}{4}\)
\(\dfrac{9\pi}{4}\)
\(\dfrac{11\pi}{4}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho \(A(2;-3;0)\) và mặt phẳng \((\alpha)\colon x+2y-z+3=0\). Tìm phương trình mặt phẳng \((P)\) đi qua \(A\) sao cho \((P)\) vuông góc với \((\alpha)\) và \((P)\) song song với trục \(Oz\)?

\(2x+y-1=0\)
\(y+2z+3=0\)
\(2x-y-7=0\)
\(x+2y-z+4=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), mặt phẳng đi qua điểm \(A(2;-1;2)\) và song song với mặt phẳng \((P)\colon2x-y+3z+2=0\) có phương trình là

\(2x-y+3z+11=0\)
\(2x-y-3z+11=0\)
\(2x-y+3z-11=0\)
\(2x-y+3z-9=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), mặt cầu \((S)\colon x^2+y^2+z^2+4x-2y+2z-3=0\) có tâm và bán kính là

\(I(2;-1;1),\,R=9\)
\(I(2;-1;1),\,R=3\)
\(I(-2;1;-1),\,R=3\)
\(I(-2;1;-1),\,R=9\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho ba điểm \(A(-1;-2;3)\), \(B(0;3;1)\), \(C(4;2;2)\). Côsin của góc \(\widehat{BAC}\) bằng

\(-\dfrac{9}{\sqrt{35}}\)
\(-\dfrac{9}{2\sqrt{35}}\)
\(\dfrac{9}{\sqrt{35}}\)
\(\dfrac{9}{2\sqrt{35}}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\) cho ba điểm \(A(2;-1;5)\), \(B(5;-5;7)\), \(M(x;y;1)\). Với giá trị nào của \(x,\,y\) thì \(A,\,B,\,M\) thẳng hàng?

\(x=4;\,y=7\)
\(x=4;\,y=-7\)
\(x=-4;\,y=7\)
\(x=-4;\,y=-7\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow{u}=(1;2;3)\) và \(\overrightarrow{v}=(-5;1;1)\). Khẳng định nào đúng?

\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{v}\right|\)
\(\overrightarrow{u}=\overrightarrow{v}\)
\(\overrightarrow{u}\bot\overrightarrow{v}\)
\(\overrightarrow{u}\) cùng phương với \(\overrightarrow{v}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho số phức \(z\) thỏa mãn \(\dfrac{\overline{z}+i}{z-1}=2-i\). Tìm số phức \(w=1+z+z^2\).

\(w=5-2i\)
\(5+2i\)
\(w=\dfrac{9}{2}+2i\)
\(w=\dfrac{9}{2}-2i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho số phức \(z=1+i\). Số phức nghịch đảo của \(z\) là

\(1-i\)
\(\dfrac{1-i}{2}\)
\(\dfrac{1-i}{\sqrt{2}}\)
\(\dfrac{-1+i}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm phần thực, phần ảo của số phức $$z=\dfrac{3-i}{1+i}+\dfrac{2+i}{i}.$$

Phần thực là \(2\), phần ảo là \(4i\)
Phần thực là \(2\), phần ảo là \(-4i\)
Phần thực là \(2\), phần ảo là \(4\)
Phần thực là \(2\), phần ảo là \(-4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự