Ngân hàng bài tập

Toán học: Hàm số

C

Cho hàm số $y=f(x)$ có bảng biến thiên trên đoạn $[-1;3]$ như sau:

Giá trị lớn nhất của hàm số đã cho trên đoạn $[-1;3]$ bằng

$1$
$4$
$0$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng xét dấu đạo hàm như sau:

Số điểm cực trị của hàm số đã cho bằng

$3$
$0$
$1$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Tiệm cận đứng của đồ thị hàm số đã cho là

$x=3$
$x=2$
$x=0$
$x=1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên dưới.

Hàm số đã cho đồng biến trên khoảng nào sau đây?

$(2;+\infty)$
$(-2;2)$
$(0;2)$
$(-\infty;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

$(-\infty;1)$
$(0;1)$
$(-1;0)$
$(-2;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Giá trị cực đại của hàm số đã cho bằng

$-2$
$-1$
$4$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Hàm số nào sau đây có đồ thị như đường cong trong hình bên dưới?

$y=-x^4+3x^2-1$
$y=x^4-3x^2-1$
$y=x^3-x^2-1$
$y=-x^3+x^2-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tiệm cận ngang của đồ thị hàm số $y=\dfrac{x+2022}{x+1}$ là

$y=2022$
$y=-1$
$y=1$
$y=-2022$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Giá trị nhỏ nhất của hàm số $y=x^3+3x^2-1$ trên đoạn $[-1;1]$ bằng

$3$
$-1$
$1$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Một xưởng in có $15$ máy in được cài đặt tự động và giám sát bởi một kỹ sư, mỗi máy in có thể in được $30$ ấn phẩm trong một giờ, chi phí cài đặt và bảo dưỡng cho mỗi máy in cho một đơn hàng là $48.000$ đồng, chi phí trả cho kỹ sư giám sát là $24.000$ đồng/giờ. Đợt hàng này xưởng in nhận $6000$ ấn phẩm thì số máy in cần sử dụng để chi phí in ít nhất là

$10$ máy
$11$ máy
$12$ máy
$9$ máy
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ sau:

Giá trị lớn nhất của hàm số $g(x)=f\big(4x-x^2\big)+\dfrac{x^3}{3}-3x^2+8x+\dfrac{1}{3}$ trên đoạn $[1;3]$ bằng

$15$
$\dfrac{25}{3}$
$\dfrac{19}{3}$
$12$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Có bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\big|3x^4-4x^3-12x^2+m\big|$ có $7$ điểm cực trị?

$4$
$6$
$3$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ xác thực trên tập số thực $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.

Đặt $g(x)=f(x)-x$, hàm số $g(x)$ nghịch biến trên khoảng

$(1;+\infty)$
$(-1;2)$
$(2;+\infty)$
$(-\infty;-1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Cho hàm số $f(x)=x^4-32x^2+4$. Có bao nhiêu giá trị nguyên của tham số $m$ sao cho ứng với mỗi $m$, tổng giá trị các nghiệm phân biệt thuộc khoảng $(-3;2)$ của phương trình $f\big(x^2+2x+3\big)=m$ bằng $-4$?

$145$
$142$
$144$
$143$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Có bao nhiêu giá trị nguyên của tham số $m$ sao cho ứng với mỗi $m$, hàm số $y=-x^3+3x^2-3mx+\dfrac{5}{3}$ có đúng một cực trị thuộc khoảng $(-2;5)$?

$16$
$6$
$17$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $y=f(x)$ có đạo hàm $f'(x)=x(x-4)$, $\forall x\in\mathbb{R}$. Khẳng định nào dưới đây đúng?

$f(4)>f(0)$
$f(0)>f(2)$
$f(5)>f(6)$
$f(4)>f(2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết đường thẳng $y=x-1$ cắt đồ thị hàm số $y=\dfrac{-x+5}{x-2}$ tại hai điểm phân biệt có hoành độ là $x_1,\,x_2$. Giá trị $x_1+x_2$ bằng

$-1$
$3$
$2$
$1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số bậc bốn $y=f(x)$ có đồ thị là đường cong trong hình bên.

Số điểm cực tiểu của hàm số đã cho là

$1$
$3$
$0$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=ax^3+bx^2+cx+d$ $(a,b,c,d\in\mathbb{R})$ có đồ thị là đường cong trong hình bên.

Giá trị cực đại của hàm số đã cho bằng

$0$
$1$
$3$
$-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Hàm số nào dưới đây có bảng biến thiên như sau?

$y=\dfrac{x+2}{x}$
$y=-x^3+3x+1$
$y=x^4-3x^2$
$y=-2x^2+1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự