Ngân hàng bài tập

Toán học: Hàm số

A

Tính $I=\displaystyle\displaystyle\int\limits_{0}^{a}\dfrac{x^3+x}{\sqrt{x^2+1}}\mathrm{\,d}x$.

$I=\left(a^2+1\right)\sqrt{a^2+1}+1$
$I=\left(a^2+1\right)\sqrt{a^2+1}-1$
$I=\dfrac{1}{3}\left[\left(a^2+1\right)\sqrt{a^2+1}-1\right]$
$I=\dfrac{1}{3}\left[\left(a^2+1\right)\sqrt{a^2+1}+1\right]$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=3x\cos(2x-5)+C$. Tìm khẳng định đúng trong các khẳng định sau:

$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=9x\cos(6x-5)+C$
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=9x\cos(2x-5)+C$
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=3x\cos(2x-5)+C$
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=3x\cos(6x-5)+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Giả sử một vật từ trạng thái nghỉ khi $t=0$ (s) chuyển động thẳng với vận tốc $v(t)=t(5-t)$ (m/s). Tìm quãng đường vật đi được khi nó dừng lại.

$\dfrac{15}{4}$ m
$5$ m
$25$ m
$\dfrac{125}{6}$ m
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Diện tích $S$ của hình phẳng giới hạn bởi đồ thị của hai hàm số $y=-2x^3+x^2+x+5$ và $y=x^2-x+5$ bằng

$S=\pi$
$S=\dfrac{1}{2}$
$S=0$
$S=1$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hàm số $f(x)=x^4-5x^2+4$. Gọi $S$ là diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$ và trục hoành. Mệnh đề nào sau đây là sai?

$S=2\displaystyle\displaystyle\int\limits_{0}^{2}\left|f(x)\right|\mathrm{\,d}x$
$S=2\left|\displaystyle\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x\right|$
$S=2\left|\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x\right|+2\left|\displaystyle\displaystyle\int\limits_{1}^{2}f(x)\mathrm{\,d}x\right|$
$S=\displaystyle\displaystyle\int\limits_{-2}^{2}\left|f(x)\right|\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $\displaystyle\displaystyle\int\limits_{0}^{6}f(x)\mathrm{\,d}x=7$, $\displaystyle\displaystyle\int\limits_{3}^{10}f(x)\mathrm{\,d}x=8$, $\displaystyle\displaystyle\int\limits_{3}^{6}f(x)\mathrm{\,d}x=9$. Giá trị của $I=\displaystyle\displaystyle\int\limits_{0}^{10}f(x)\mathrm{\,d}x$ bằng

$8$
$6$
$7$
$5$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết $F(x)$ là một nguyên hàm của $f(x)=\dfrac{1}{x-1}$ và $F(2)=1$. Tính $F(3)$.

$F(3)=\dfrac{7}{4}$
$F(3)=\ln2+1$
$F(3)=\dfrac{1}{2}$
$F(3)=\ln2-1$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Tích phân $\displaystyle\displaystyle\int\limits_{0}^{1}\dfrac{1}{\sqrt{x+1}}\mathrm{\,d}x=a+b\sqrt{2}$ với $a,\,b\in\mathbb{Q}$. Khi đó $a-b$ bằng

$4$
$-4$
$1$
$-1$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=1$. Tính $F\left(\dfrac{\pi}{6}\right)$.

$F\left(\dfrac{\pi}{6}\right)=0$
$F\left(\dfrac{\pi}{6}\right)=\dfrac{3}{4}$
$F\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}$
$F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Họ nguyên hàm của hàm số $f(x)=3x\left(x-\mathrm{e}^x\right)$ là

$x^3+(3x-1)\mathrm{e}^x+C$
$x^3-3(x-1)\mathrm{e}^x+C$
$x^3+3(x-1)\mathrm{e}^x+C$
$x^3-(3x+1)\mathrm{e}^x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Kết quả của $I=\displaystyle\displaystyle\int x\mathrm{e}^x\mathrm{\,d}x$ là

$I=x\mathrm{e}^x-\mathrm{e}^x+C$
$I=\dfrac{x^2}{2}\mathrm{e}^x+C$
$I=\dfrac{x^2}{2}\mathrm{e}^x+\mathrm{e}^x+C$
$I=x\mathrm{e}^x+\mathrm{e}^x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hàm số $f(x)=-x^2+3$ và hàm số $g(x)=x^2-2x-1$ có đồ thị như hình vẽ.

Tích phân $I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left|f(x)-g(x)\right|\mathrm{\,d}x$ bằng với tích phân nào dưới đây?

$I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left[f(x)-g(x)\right]\mathrm{\,d}x$
$I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left[g(x)-f(x)\right]\mathrm{\,d}x$
$I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left[\left|f(x)\right|-\left|g(x)\right|\right]\mathrm{\,d}x$
$I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left[f(x)+g(x)\right]\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Gọi $S$ là diện tích của hình phẳng giới hạn bởi các đường $y=\dfrac{\ln x}{x^2}$, $y=0$, $x=1$, $x=\mathrm{e}$. Mệnh đề nào dưới đây là đúng?

$S=\pi\displaystyle\displaystyle\int\limits_{1}^{\mathrm{e}}\dfrac{\ln x}{x^2}\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{1}^{\mathrm{e}}\dfrac{\ln x}{x^2}\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{1}^{\mathrm{e}}\left(\dfrac{\ln x}{x^2}\right)^2\mathrm{\,d}x$
$S=\pi\displaystyle\displaystyle\int\limits_{1}^{\mathrm{e}}\left(\dfrac{\ln x}{x^2}\right)^2\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho $\displaystyle\displaystyle\int\limits_{0}^{3}f(x)\mathrm{\,d}x=2$ và $\displaystyle\displaystyle\int\limits_{0}^{3}g(x)\mathrm{\,d}x=3$. Tính giá trị của tích phân $L=\displaystyle\displaystyle\int\limits_{0}^{3}\left[2f(x)-g(x)\right]\mathrm{\,d}x$.

$-4$
$4$
$-1$
$1$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hình phẳng $\left(\mathscr{D}\right)$ giới hạn bởi đồ thị hàm số $y=\sqrt{x}$, hai đường thẳng $x=1$, $x=2$ và trục hoành. Tính thể tích khối tròn xoay tạo thành khi quay $\left(\mathscr{D}\right)$ quanh trục hoành.

$3\pi$
$\dfrac{3}{2}$
$\dfrac{2\pi}{3}$
$\dfrac{3\pi}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{2}\mathrm{\,d}x$ bằng

$2$
$0$
$1$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Tìm họ nguyên hàm của hàm số $f(x)=\dfrac{1}{3x+1}$.

$\ln|3x+1|+C$
$\dfrac{1}{3}\ln|3x+1|+C$
$\ln(3x+1)+C$
$\dfrac{1}{3}\ln(3x+1)+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Tìm họ nguyên hàm của hàm số $f(x)=\mathrm{e}^{2021x}$.

$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^{2021x}+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^{2021x}\cdot\ln2021+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=2021\cdot\mathrm{e}^{2021x}+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{1}{2021}\cdot\mathrm{e}^{2021x}+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Diện tích $S$ của hình phẳng giới hạn bởi đồ thị của hàm số $y=f_1(x)$, $y=f_2(x)$ liên tục trên đoạn $[a;b]$ và hai đường thẳng $x=a$, $x=b$ ($a< b$) được tính theo công thức

$S=\left|\displaystyle\displaystyle\int\limits_{a}^{b}\left[f_1(x)-f_2(x)\right]\mathrm{\,d}x\right|$
$S=\displaystyle\displaystyle\int\limits_{a}^{b}f_1(x)\mathrm{\,d}x-\displaystyle\displaystyle\int\limits_{a}^{b}f_2(x)\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{a}^{b}\left[f_1(x)-f_2(x)\right]\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{a}^{b}\left|f_1(x)-f_2(x)\right|\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Biết hàm số $f(x)$ đạt cực trị tại hai điểm $x_1$, $x_2$ thỏa mãn $x_2=x_1+2$ và $f\left(x_1\right)+f\left(x_2\right)=0$. Gọi $S_1$ và $S_2$ là diện tích của hai hình phẳng được gạch trong hình bên. Tỉ số $\dfrac{S_1}{S_2}$ bằng

$\dfrac{3}{4}$
$\dfrac{5}{8}$
$\dfrac{3}{8}$
$\dfrac{3}{5}$
2 lời giải Sàng Khôn
Lời giải Tương tự