Ngân hàng bài tập

Giáo viên: Sàng Khôn

A

Biết $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=3x\cos(2x-5)+C$. Tìm khẳng định đúng trong các khẳng định sau:

$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=9x\cos(6x-5)+C$
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=9x\cos(2x-5)+C$
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=3x\cos(2x-5)+C$
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=3x\cos(6x-5)+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Giả sử một vật từ trạng thái nghỉ khi $t=0$ (s) chuyển động thẳng với vận tốc $v(t)=t(5-t)$ (m/s). Tìm quãng đường vật đi được khi nó dừng lại.

$\dfrac{15}{4}$ m
$5$ m
$25$ m
$\dfrac{125}{6}$ m
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Diện tích $S$ của hình phẳng giới hạn bởi đồ thị của hai hàm số $y=-2x^3+x^2+x+5$ và $y=x^2-x+5$ bằng

$S=\pi$
$S=\dfrac{1}{2}$
$S=0$
$S=1$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hàm số $f(x)=x^4-5x^2+4$. Gọi $S$ là diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$ và trục hoành. Mệnh đề nào sau đây là sai?

$S=2\displaystyle\displaystyle\int\limits_{0}^{2}\left|f(x)\right|\mathrm{\,d}x$
$S=2\left|\displaystyle\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x\right|$
$S=2\left|\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x\right|+2\left|\displaystyle\displaystyle\int\limits_{1}^{2}f(x)\mathrm{\,d}x\right|$
$S=\displaystyle\displaystyle\int\limits_{-2}^{2}\left|f(x)\right|\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, mặt cầu $(S)$ có tâm $I(-1;2;1)$ và tiếp xúc với mặt phẳng $(P)\colon x-2y-2z-2=0$ có phương trình là

$(S)\colon(x-1)^2+(y+2)^2+(z+1)^2=9$
$(S)\colon(x+1)^2+(y-2)^2+(z-1)^2=3$
$(S)\colon(x+1)^2+(y-2)^2+(z-1)^2=9$
$(S)\colon(x-1)^2+(y+2)^2+(z+1)^2=3$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Có bao nhiêu số phức $z$ có phần thực bằng $2$ và $|z+1-2i|=3$?

$0$
$1$
$3$
$2$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $\displaystyle\displaystyle\int\limits_{0}^{6}f(x)\mathrm{\,d}x=7$, $\displaystyle\displaystyle\int\limits_{3}^{10}f(x)\mathrm{\,d}x=8$, $\displaystyle\displaystyle\int\limits_{3}^{6}f(x)\mathrm{\,d}x=9$. Giá trị của $I=\displaystyle\displaystyle\int\limits_{0}^{10}f(x)\mathrm{\,d}x$ bằng

$8$
$6$
$7$
$5$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$). Dưới đây có bao nhiêu mệnh đề đúng?

  1. Môđun của $z$ là một số thực dương.
  2. $z^2=|z|^2$.
  3. $\left|\overline{z}\right|=\left|iz\right|=|z|$.
  4. Điểm $M(-a;b)$ biểu diễn số phức $\overline{z}$.
$4$
$1$
$3$
$2$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết $F(x)$ là một nguyên hàm của $f(x)=\dfrac{1}{x-1}$ và $F(2)=1$. Tính $F(3)$.

$F(3)=\dfrac{7}{4}$
$F(3)=\ln2+1$
$F(3)=\dfrac{1}{2}$
$F(3)=\ln2-1$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Tích phân $\displaystyle\displaystyle\int\limits_{0}^{1}\dfrac{1}{\sqrt{x+1}}\mathrm{\,d}x=a+b\sqrt{2}$ với $a,\,b\in\mathbb{Q}$. Khi đó $a-b$ bằng

$4$
$-4$
$1$
$-1$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=1$. Tính $F\left(\dfrac{\pi}{6}\right)$.

$F\left(\dfrac{\pi}{6}\right)=0$
$F\left(\dfrac{\pi}{6}\right)=\dfrac{3}{4}$
$F\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}$
$F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, tọa độ giao điểm của trục hoành với mặt phẳng $(P)\colon x-2y+z-2=0$ là

$(-2;0;0)$
$(2;0;0)$
$(0;-1;0)$
$(0;0;2)$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Gọi $z_1,\,z_2$ là các nghiệm phức của phương trình $z^2+2z+5=0$. Tính $M=\left|z_1\right|^2+\left|z_2\right|^2$.

$M=4\sqrt{5}$
$M=2\sqrt{34}$
$M=12$
$M=10$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Họ nguyên hàm của hàm số $f(x)=3x\left(x-\mathrm{e}^x\right)$ là

$x^3+(3x-1)\mathrm{e}^x+C$
$x^3-3(x-1)\mathrm{e}^x+C$
$x^3+3(x-1)\mathrm{e}^x+C$
$x^3-(3x+1)\mathrm{e}^x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Kết quả của $I=\displaystyle\displaystyle\int x\mathrm{e}^x\mathrm{\,d}x$ là

$I=x\mathrm{e}^x-\mathrm{e}^x+C$
$I=\dfrac{x^2}{2}\mathrm{e}^x+C$
$I=\dfrac{x^2}{2}\mathrm{e}^x+\mathrm{e}^x+C$
$I=x\mathrm{e}^x+\mathrm{e}^x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho số phức $z=6+7i$. Số phức liên hợp của $z$ có điểm biểu diễn là điểm nào sau đây?

$N(-6;7)$
$M(6;-7)$
$Q(6;7)$
$P(-6;-7)$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hàm số $f(x)=-x^2+3$ và hàm số $g(x)=x^2-2x-1$ có đồ thị như hình vẽ.

Tích phân $I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left|f(x)-g(x)\right|\mathrm{\,d}x$ bằng với tích phân nào dưới đây?

$I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left[f(x)-g(x)\right]\mathrm{\,d}x$
$I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left[g(x)-f(x)\right]\mathrm{\,d}x$
$I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left[\left|f(x)\right|-\left|g(x)\right|\right]\mathrm{\,d}x$
$I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left[f(x)+g(x)\right]\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Gọi $S$ là diện tích của hình phẳng giới hạn bởi các đường $y=\dfrac{\ln x}{x^2}$, $y=0$, $x=1$, $x=\mathrm{e}$. Mệnh đề nào dưới đây là đúng?

$S=\pi\displaystyle\displaystyle\int\limits_{1}^{\mathrm{e}}\dfrac{\ln x}{x^2}\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{1}^{\mathrm{e}}\dfrac{\ln x}{x^2}\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{1}^{\mathrm{e}}\left(\dfrac{\ln x}{x^2}\right)^2\mathrm{\,d}x$
$S=\pi\displaystyle\displaystyle\int\limits_{1}^{\mathrm{e}}\left(\dfrac{\ln x}{x^2}\right)^2\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, cho điểm $A(2;-1;1)$. Phương trình mặt phẳng $\left(\alpha\right)$ qua các hình chiếu của điểm $A$ trên các trục tọa độ là

$\dfrac{x}{2}+\dfrac{y}{-1}+\dfrac{z}{1}=-1$
$\dfrac{x}{2}+\dfrac{y}{-1}+\dfrac{z}{1}=0$
$\dfrac{x}{2}+\dfrac{y}{-1}+\dfrac{z}{1}=1$
$\dfrac{x}{2}+\dfrac{y}{1}+\dfrac{z}{1}=1$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho $\displaystyle\displaystyle\int\limits_{0}^{3}f(x)\mathrm{\,d}x=2$ và $\displaystyle\displaystyle\int\limits_{0}^{3}g(x)\mathrm{\,d}x=3$. Tính giá trị của tích phân $L=\displaystyle\displaystyle\int\limits_{0}^{3}\left[2f(x)-g(x)\right]\mathrm{\,d}x$.

$-4$
$4$
$-1$
$1$
1 lời giải Sàng Khôn
Lời giải Tương tự