Ngân hàng bài tập

Giáo viên: Huỳnh Phú Sĩ

A

Cho hàm số \(y=\dfrac{mx+2}{2x+m}\) với \(m\) là tham số thực. Gọi \(S\) là tập hợp tất cả các giá trị nguyên của \(m\) để hàm số nghịch biến trên khoảng \((0;1)\). Tìm số phần tử của \(S\).

\(1\)
\(5\)
\(2\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi \(S\) là tập hợp các số nguyên \(m\) để hàm số $$y=\dfrac{x+2m-3}{x-3m+2}$$đồng biến trên khoảng \((-\infty;-14)\). Tính tổng \(T\) của các phần tử trong \(S\).

\(T=-10\)
\(T=-9\)
\(T=-6\)
\(T=-5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $$y=2x^3-3(3m+1)x^2+6\left(2m^2+m\right)x-12m^2+3m+1.$$Tính tổng tất cả giá trị nguyên dương của tham số \(m\) để hàm số nghịch biến trên khoảng \((1;3)\).

\(0\)
\(3\)
\(1\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hàm số \(y=ax^3+bx^2+cx+d\) đồng biến trên \(\mathbb{R}\) khi

\(\left[\begin{array}{l}a=b,\;c>0\\ b^2-3ac\leq0\end{array}\right.\)
\(\left[\begin{array}{l}a=b=c=0\\ a>0,\;b^2-3ac<0\end{array}\right.\)
\(\left[\begin{array}{l}a=b=0,\;c>0\\ a>0,\;b^2-3ac\leq0\end{array}\right.\)
\(\left[\begin{array}{l}a=b=0,\;c>0\\ a>0,\;b^2-3ac\geq0\end{array}\right.\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x+2-m}{x+1}$$nghịch biến trên mỗi khoảng xác định của nó.

\(m<-3\)
\(m\leq-3\)
\(m\leq1\)
\(m<1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Số giá trị nguyên của \(m\) để hàm số $$y=\dfrac{mx-2}{-2x+m}$$nghịch biến trên khoảng \(\left(\dfrac{1}{2};+\infty\right)\) là

\(4\)
\(5\)
\(3\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=\dfrac{mx+1}{x+m}$$đồng biến trên khoảng \((2;+\infty)\).

\(-2\leq m<-1\) hoặc \(m>1\)
\(m\leq-1\) hoặc \(m>1\)
\(-1< m<1\)
\(m<-1\) hoặc \(m\geq1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm điều kiện của tham số \(m\) để hàm số $$y=\dfrac{x^3}{3}-mx^2+(2m+15)x+7$$luôn đồng biến trên \(\mathbb{R}\).

\(-3\leq m\leq5\)
\(m\leq-3\) hoặc \(m\geq5\)
\(-3< m<5\)
\(m<-3\) hoặc \(m>5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}-(m+1)x^2+(4m-8)x+2$$nghịch biến trên \(\mathbb{R}\).

\(9\)
\(7\)
Vô số
\(8\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x+2-m}{x+1}$$nghịch biến trên các khoảng xác định của nó.

\(m\leq1\)
\(m<1\)
\(m<-3\)
\(m\leq-3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm tập hợp các giá trị của tham số \(m\) để hàm số $$y=\dfrac{x^3}{3}+x^2+(m-1)x+2019$$đồng biến trên \(\mathbb{R}\).

\([1;+\infty)\)
\([1;2]\)
\((-\infty;2]\)
\([2;+\infty)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=(m-1)x^3+(m-1)x^2-(2m+1)x+5$$nghịch biến trên tập xác định.

\(-\dfrac{5}{4}\leq m\leq1\)
\(-\dfrac{2}{7}\leq m<1\)
\(-\dfrac{7}{2}\leq m<1\)
\(-\dfrac{2}{7}\leq m\leq1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm tất cả các giá trị thực của tham số \(m\) sao cho hàm số $$y=x^4-2(m-1)x^2+m-2$$đồng biến trên khoảng \((1;3)\).

\(m\in(-\infty;-5)\)
\(m\in[-5;2)\)
\(m\in(2;+\infty)\)
\(m\in(-\infty;2]\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x^3}{3}-2mx^2+4x-5$$đồng biến trên \(\mathbb{R}\).

\(0< m<1\)
\(-1\leq m\leq1\)
\(0\leq m\leq1\)
\(-1< m<1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}-mx^2+(2m-3)x-m+2$$nghịch biến trên \(\mathbb{R}\).

\(m\in(-\infty;-3)\cup(1;+\infty)\)
\(m\in[-3;1]\)
\(m\in(-\infty;1]\)
\(m\in(-3;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}+mx^2-(2m+3)x+4$$nghịch biến trên \(\mathbb{R}\).

\(-1\leq m\leq3\)
\(-3< m<1\)
\(-1< m<3\)
\(-3\leq m\leq1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=f(x)\). Biết rằng \(f(x)\) có đạo hàm \(f'(x)\) với đồ thị như hình vẽ.

Khẳng định nào sau đây đúng về hàm số \(y=f(x)\)?

Hàm số đồng biến trên khoảng \((-\infty;-1)\)
Hàm số đồng biến trên khoảng \((-1;0)\)
Hàm số đồng biến trên khoảng \((1;2)\)
Hàm số nghịch biến trên khoảng \((0;+\infty)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=f(x)\). Biết rằng \(f(x)\) có đạo hàm \(f'(x)\) với đồ thị như hình vẽ.

Khẳng định nào sau đây sai?

Hàm số \(y=f(x)\) nghịch biến trên khoảng \((-\infty;-2)\)
Hàm số \(y=f(x)\) đồng biến trên khoảng \((1;+\infty)\)
Hàm số \(y=f(x)\) luôn tăng trên khoảng \((-1;1)\)
Hàm số \(y=f(x)\) giảm trên đoạn có độ dài bằng \(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(y=x^3+3x^2-4\) có bảng biến thiên như hình vẽ. Tìm \(a\) và \(b\).

\(a=+\infty,\;b=2\)
\(a=-\infty,\;b=-4\)
\(a=-\infty,\;b=1\)
\(a=+\infty,\;b=3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(y=f(x)\) có bảng xét dấu đạo hàm như sau:

Mệnh đề nào sau đây là đúng?

Hàm số nghịch biến trên khoảng \((-\infty;-2)\)
Hàm số đồng biến trên khoảng \((-\infty;0)\)
Hàm số nghịch biến trên khoảng \((0;2)\)
Hàm số đồng biến trên khoảng \((-2;0)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự