Ngân hàng bài tập

Giáo viên: Huỳnh Phú Sĩ

C

Nếu $\displaystyle\displaystyle\int\limits_0^1f(x)\mathrm{~d}x=2$ và $\displaystyle\displaystyle\int\limits_1^3f(x)\mathrm{~d}x=5$ thì $\displaystyle\displaystyle\int\limits_0^3f(x)\mathrm{~d}x$ bằng

$10$
$3$
$7$
$-3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho số phức $z=1-2i$. Phần ảo của số phức $\overline{z}$ bằng

$-1$
$2$
$1$
$-2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{u}=(1;2;-2)$ và $\overrightarrow{v}=(2;-2;3)$. Tọa độ của vectơ $\overrightarrow{u}+\overrightarrow{v}$ là

$(-1;4;-5)$
$(1;-4;5)$
$(3;0;1)$
$(3;0;-1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho mặt cầu $(S)$ có tâm $I(1;2;-1)$ và bán kính $R=2$. Phương trình của $(S)$ là

$(x-1)^2+(y-2)^2+(z+1)^2=4$
$(x-1)^2+(y-2)^2+(z+1)^2=2$
$(x+1)^2+(y+2)^2+(z-1)^2=2$
$(x+1)^2+(y+2)^2+(z-1)^2=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho dãy số $\big(u_n\big)$ với $u_n=\dfrac{1}{n+1}$, $\forall n\in\mathbb{N}^*$. Giá trị của $u_3$ bằng

$4$
$\dfrac{1}{4}$
$\dfrac{1}{3}$
$\dfrac{1}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=\big(2x^2-1\big)^{\tfrac{1}{2}}$. Giá trị của hàm số đã cho tại điểm $x=2$ bằng

$3$
$\sqrt{7}$
$\sqrt{3}$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho khối chóp $S.ABCD$ có chiều cao bằng $4$ và đáy $ABCD$ có diện tích bằng $3$. Thể tích khối chóp đã cho bằng

$7$
$5$
$4$
$12$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai số phức $z_1=2-i$ và $z_2=1+3i$. Phần thực của số phức $z_1-z_2$ bằng

$3$
$-4$
$1$
$-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho khối nón có thể tích bằng $12$ và diện tích đáy bằng $9$. Chiều cao của khối nón đã cho bằng

$\dfrac{4\pi}{3}$
$\dfrac{4}{3}$
$4\pi$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình trụ có chiều cao $h=3$ và bán kính đáy $r=4$. Diện tích xung quanh của hình trụ đã cho bằng

$48\pi$
$16\pi$
$24\pi$
$56\pi$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=f(x)$ có bảng xét dấu đạo hàm như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

$(-\infty;0)$
$(2;+\infty)$
$(0;+\infty)$
$(-1;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Điểm $M$ trong hình bên là điểm biểu diễn của số phức nào dưới đây?

$2-i$
$1+2i$
$1-2i$
$2+i$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$. Biết hàm số $F(x)$ là một nguyên hàm của $f(x)$ trên $\mathbb{R}$ và $F(2)=6$, $F(4)=12$. Tích phân $\displaystyle\displaystyle\int\limits_2^4f(x)\mathrm{~d}x$ bằng

$2$
$6$
$18$
$-6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Nếu khối lăng trụ $ABC.A'B'C'$ có thể tích $V$ thì khối chóp $A'.ABC$ có thể tích bằng

$\dfrac{V}{3}$
$V$
$\dfrac{2V}{3}$
$3V$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tiệm cận đứng của đồ thị hàm số $y=\dfrac{3x-1}{x-2}$ có phương trình là

$x=2$
$x=-2$
$x=3$
$x=\dfrac{1}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Số nghiệm thực của phương trình $f(x)=2$ là

$1$
$0$
$2$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Với $b,\,c$ là hai số thực dương tùy ý thỏa mãn $\log_5b\ge\log_5c$, khẳng định nào dưới đây là đúng?

$b\ge c$
$b\le c$
$b>c$
$b< c$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Đạo hàm của hàm số $y=\log_2(x-1)$ là

$y'=\dfrac{x-1}{\ln2}$
$y'=\dfrac{1}{\ln2}$
$y'=\dfrac{1}{(x-1)\ln2}$
$y'=\dfrac{1}{x-1}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $f(x)=\cos x-x$. Khẳng định nào dưới đây đúng?

$\displaystyle\displaystyle\int f(x)\mathrm{~d}x=-\sin x+x^2+C$
$\displaystyle\displaystyle\int f(x)\mathrm{~d}x=-\sin x-\dfrac{x^2}{2}+C$
$\displaystyle\displaystyle\int f(x)\mathrm{~d}x=\sin x-x^2+C$
$\displaystyle\displaystyle\int f(x)\mathrm{~d}x=\sin x-\dfrac{x^2}{2}+C$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Có bao nhiêu tam giác mà ba đỉnh của nó được lấy từ các đỉnh của một lục giác đều?

$729$
$20$
$120$
$216$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự