Nếu $\displaystyle\displaystyle\int\limits_{2}^{5}f(x)\mathrm{\,d}x=3$ và $\displaystyle\displaystyle\int\limits_{2}^{5}g(x)\mathrm{\,d}x=-2$ thì $\displaystyle\displaystyle\int\limits_{2}^{5}[f(x)+g(x)]\mathrm{\,d}x$ bằng
| $5$ | |
| $-5$ | |
| $1$ | |
| $3$ |
Nghiệm của phương trình $\log_2(x+4)=3$ là
| $x=5$ | |
| $x=4$ | |
| $x=2$ | |
| $x=12$ |
Tập xác định của hàm số $y=x^{\sqrt{2}}$ là
| $\mathbb{R}$ | |
| $\mathbb{R}\setminus\{0\}$ | |
| $(0;+\infty)$ | |
| $(2;+\infty)$ |
Cho khối chóp có diện tích đáy $B=7$ và chiều cao $h=6$. Thể tích của khối chóp đã cho bằng
| $42$ | |
| $126$ | |
| $14$ | |
| $56$ |
Tập nghiệm của bất phương trình $2^x>6$ là
| $\left(\log_26;+\infty\right)$ | |
| $(-\infty;3)$ | |
| $(3;+\infty)$ | |
| $\left(-\infty;\log_26\right)$ |
Cho hàm số $y=f(x)$ có bảng xét dấu của đạo hàm như sau:

Số điểm cực trị của hàm số đã cho là
| $3$ | |
| $2$ | |
| $4$ | |
| $5$ |
Trên khoảng $(0;+\infty)$, họ nguyên hàm của hàm số $f(x)=x^{\tfrac{3}{2}}$ là
| $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{3}{2}x^{\tfrac{1}{2}}+C$ | |
| $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{5}{2}x^{\tfrac{2}{5}}+C$ | |
| $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{2}{5}x^{\tfrac{5}{2}}+C$ | |
| $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{2}{3}x^{\tfrac{1}{2}}+C$ |
Thể tích $V$ của khối cầu bán kính $r$ được tính theo công thức nào dưới đây?
| $V=\dfrac{1}{3}\pi r^3$ | |
| $V=2\pi r^3$ | |
| $V=4\pi r^3$ | |
| $V=\dfrac{4}{3}\pi r^3$ |
Điểm nào dưới đây thuộc đồ thị của hàm số $y=x^4+x^2-2$?
| Điểm $P(-1;-1)$ | |
| Điểm $N(-1;-2)$ | |
| Điểm $M(-1;0)$ | |
| Điểm $Q(-1;1)$ |
Trong không gian $Oxyz$, mặt cầu $(S)\colon(x+1)^2+(y-2)^2+z^2=9$ có bán kính bằng
| $3$ | |
| $81$ | |
| $9$ | |
| $6$ |
Môđun của số phức $z=3-i$ bằng
| $8$ | |
| $\sqrt{10}$ | |
| $10$ | |
| $2\sqrt{2}$ |
Cho hàm số $f(x)$ có đạo hàm trên $\mathbb{R}$ thỏa mãn $f(1)=-13$ và $f'(x)=15x^2-16x-1+\displaystyle\int\limits_{0}^{1}xf(x)\mathrm{\,d}x$. Khi đó $\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x$ bằng
| $\dfrac{26}{3}$ | |
| $-\dfrac{64}{3}$ | |
| $-\dfrac{35}{4}$ | |
| $\dfrac{15}{4}$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa mãn $f(x)=3x^2-2x+3+4\displaystyle\int\limits_{0}^{1}xf\left(x^2\right)\mathrm{\,d}x$. Khi đó $\displaystyle\int\limits_{2}^{3}f(x)\mathrm{\,d}x$ bằng
| $17$ | |
| $11$ | |
| $14$ | |
| $21$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$ thỏa mãn $f(x)=x^2-3x+2\displaystyle\int\limits_{0}^{1}f(x)f'(x)\mathrm{\,d}x$. Khi đó $\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x$ bằng
| $\dfrac{10}{3}$ | |
| $-\dfrac{10}{3}$ | |
| $\dfrac{26}{15}$ | |
| $-\dfrac{26}{15}$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $f(x)=\sin x+2\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\cos x\cdot f(x)\mathrm{\,d}x$. Giá trị $f\left(-\dfrac{\pi}{2}\right)$ bằng
| $-\pi$ | |
| $-1$ | |
| $-2$ | |
| $0$ |
Cho hàm số $f(x)$ xác định và liên tục trên đoạn $[0;1]$ thỏa mãn $f(x)=x^3+\displaystyle\int\limits_{0}^{1}x^3f\left(x^2\right)\mathrm{\,d}x$, $\forall x\in[0;1]$. Tính tích phân $\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x$.
| $\dfrac{1}{4}$ | |
| $\dfrac{4}{15}$ | |
| $\dfrac{13}{20}$ | |
| $\dfrac{23}{60}$ |
Cho hàm số $f(x)$ thỏa mãn $f(x)=x\mathrm{e}^x+\displaystyle\int\limits_{0}^{2}\left(f(x)+f'(x)-\mathrm{e}^x-1\right)\mathrm{\,d}x$. Tính tích phân $\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x$.
| $2\mathrm{e}^2-1$ | |
| $-2\mathrm{e}^2-1$ | |
| $-2\mathrm{e}^2+1$ | |
| $2\mathrm{e}^2+1$ |
Cho hàm số $f(x)$ xác định và liên tục trên $[0;+\infty)$ thỏa mãn $f(x)=x\sqrt{x}+\displaystyle\int\limits_{0}^{1}xf(x)\mathrm{\,d}x$. Tính tích phân $\displaystyle\int\limits_{0}^{4}f(x)\mathrm{\,d}x$.
| $\dfrac{528}{35}$ | |
| $\dfrac{488}{35}$ | |
| $\dfrac{408}{35}$ | |
| $\dfrac{368}{35}$ |
Cho hàm số $f(x)$ xác định và liên tục trên khoảng $(0;+\infty)$ thỏa mãn $f(x)=\dfrac{1}{x}+\displaystyle\int\limits_{1}^{2}xf(x)\mathrm{\,d}x$, $\forall x\in(0;+\infty)$. Tính tích phân $\displaystyle\int\limits_{1}^{\mathrm{e}}f(x)\mathrm{\,d}x$.
| $\dfrac{5-2\mathrm{e}}{3}$ | |
| $3-2\mathrm{e}$ | |
| $2+2\mathrm{e}$ | |
| $1-2\mathrm{e}$ |
Xét hàm số $f(x)=\mathrm{e}^x+\displaystyle\int\limits_{0}^{1}xf(x)\mathrm{\,d}x$. Giá trị $f\left(\ln5620\right)$ bằng
| $5622$ | |
| $5620$ | |
| $5618$ | |
| $5621$ |