Ngân hàng bài tập

Toán học

B

Gọi $M, N$ lần lượt là điểm biểu diễn hình học các số phức $z=4+i$ và $w=2+3 i$. Tọa độ trung điểm $I$ của đoạn thẳng $MN$ là

$(2;-2)$
$(-2;2)$
$(3;2)$
$\left(\dfrac{3}{2};\dfrac{7}{2}\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Công thức tính thể tích vật thể tròn xoay thu được khi cho hình phẳng (phần gạch sọc của hình vẽ) giới hạn bởi các đường $y=\sqrt{x+2}$, $Ox$, $x=1$ quay xung quanh trục $Ox$ là

$\pi\displaystyle\displaystyle\int\limits_{-2}^{1}(x+2)\mathrm{d}x$
$\pi\displaystyle\displaystyle\int\limits_{1}^{4}\sqrt[4]{x+2}\mathrm{d}x$
$\pi\displaystyle\displaystyle\int\limits_{-2}^{1}\sqrt{x+2}\mathrm{d}x$
$\pi\displaystyle\displaystyle\int\limits_{1}^{4}(x+2)\mathrm{d}x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Họ các nguyên hàm của hàm số $f(x)=\dfrac{2}{x+1}$ trên $\mathbb{R}\setminus\{-1\}$ là

$\dfrac{-2}{(x+1)^2}+C$
$2\ln|x+1|+C$
$-\dfrac{1}{2}\ln|x+1|+C$
$\dfrac{1}{(x+1)^2}+C$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính diện tích $S$ của hình phẳng giới hạn bởi đồ thị hàm số $y=x^2-4x$, $Ox$ và $x=0,\,x=2$.

$S=9$
$S=\dfrac{16}{3}$
$S=\dfrac{32}{3}$
$S=\dfrac{5}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho $F(x)=x+\cos x$ là một nguyên hàm của hàm số $f(x)$. Mệnh đề nào sau đây đúng?

$f(x)=\dfrac{1}{2}x^2-\cos x$
$f(x)=1-\sin x$
$f(x)=1+\sin x$
$f(x)=\dfrac{1}{2}x^2+\sin x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Số phức $z$ có điểm biểu diễn $M$ trong hình vẽ bên.

Phần ảo của số phức $z+i$ bằng

$4$
$3i$
$2$
$6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm số phức $z=a+bi$ $\left(a,\,b\in\mathbb{R},\,i^2=-1\right)$, biết $a,\,b$ thỏa mãn $a-1+(b+1)i=2i$.

$z=-i$
$z=1+i$
$z=\dfrac{1}{2}-i$
$z=2i$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho các điểm $A(-1;2;3)$, $B(6;-5;8)$. Tìm tọa độ $M$ để gốc tọa độ $O$ là trọng tâm tam giác $MAB$.

$(7;-7;5)$
$(5;-3;11)$
$\left(\dfrac{5}{2};\dfrac{-3}{2};\dfrac{11}{2}\right)$
$(-5;3;-11)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm các số thực $x,\,y$ thỏa mãn $2x-2yi=x+2+(y+3)i$.

$x=2,\,y=1$
$x=-1,\,y=3$
$x=-3,\,y=-1$
$x=2,\,y=-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức $z$ thỏa mãn $(1+i)^2z=i(6-8i)$. Môđun của $z$ bằng

$5$
$3\sqrt{2}$
$10$
$1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Biết $M(1;2)$ là điểm biểu diễn số phức $z$. Mệnh đề nào sau đây đúng?

$z=1-2i$
$z=2+i$
$z=1+2i$
$z=2-i$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Các căn bậc hai của $-4$ là

$\pm2i$
$\pm4$
$\pm2$
$\pm16i$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Gọi $S$ là diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$ và trục hoành (phần gạch sọc như hình vẽ).

Mệnh đề nào sau đây là đúng?

$S=\displaystyle\displaystyle\int\limits_{a}^{c}f(x)\mathrm{d}x$
$S=\left|\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x+\displaystyle\displaystyle\int\limits_{b}^{c}f(x)\mathrm{d}x\right|$
$S=\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x-\displaystyle\displaystyle\int\limits_{b}^{c}f(x)\mathrm{d}x$
$S=\displaystyle\displaystyle\int\limits_{a}^{c}f(x)\mathrm{d}x-\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức $z$ thỏa mãn $\overline{z}=\dfrac{(1-2i)(i-1)}{1+i}$. Tính môđun của số phức $w=iz$.

$3$
$\sqrt{12}$
$\sqrt{5}$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon x-y+2z=0$. Một vectơ pháp tuyến của mặt phẳng $(P)$ là

$\overrightarrow{n}=(-1;-1;2)$
$\overrightarrow{m}=(1;1;0)$
$\overrightarrow{p}=(2;1;-1)$
$\overrightarrow{q}=(1;-1;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho $\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{d}x=10$. Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{1}\big[6f(x)\big]\mathrm{d}x$.

$I=\dfrac{10}{6}$
$I=60$
$I=6$
$I=16$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$, gọi $S$ là diện tích của hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$, trục hoành và hai đường thẳng $x=a,\,x=b$ $(a< b)$. Mệnh đề nào sau đây đúng?

$S=\pi\displaystyle\displaystyle\int\limits_{a}^{b}\big|f(x)\big|\mathrm{d}x$
$S=\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x$
$S=\pi\displaystyle\displaystyle\int\limits_{a}^{b}f^2(x)\mathrm{d}x$
$S=\displaystyle\displaystyle\int\limits_{a}^{b}\big|f(x)\big|\mathrm{d}x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho $f(x)$ và $g(x)$ là các hàm số liên tục trên đoạn $[a;b]$. Mệnh đề nào sau đây đúng?

$\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{d}x=-\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x-\displaystyle\displaystyle\int\limits_{a}^{b}g(x)\mathrm{d}x$
$\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{d}x=-\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x+\displaystyle\displaystyle\int\limits_{a}^{b}g(x)\mathrm{d}x$
$\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{d}x=\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x-\displaystyle\displaystyle\int\limits_{a}^{b}g(x)\mathrm{d}x$
$\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{d}x=\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x+\displaystyle\displaystyle\int\limits_{a}^{b}g(x)\mathrm{d}x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Một nguyên hàm $F(x)$ của hàm số $f(x)=3^x$ là

$F(x)=3^x\ln3-2022$
$F(x)=\dfrac{3^x}{\ln3}+2020x$
$F(x)=\dfrac{3^x}{\ln3}+2021$
$F(x)=3^x+2019$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tất cả các nghiệm phức của phương trình $z^2-2z+5=0$ là

$1$
$2i,\,-2i$
$1+2i,\,1-2i$
$2+i,\,2-i$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự