Ngân hàng bài tập

Toán học: Hàm số

C

Cho hình phẳng \(D\) giới hạn bởi đồ thị hai hàm số  \(y=f(x),\,y=g(x)\) liên tục trên đoạn \([a;b]\) và hai đường thẳng \(x=a,\,x=b\). Diện tích \(S\) của hình phẳng \(D\) là

\(S=\displaystyle\int\limits_a^b[f(x)+g(x)]\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_a^b |f(x)-g(x)|\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_a^b[f(x)-g(x)]\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_a^b[g(x)-f(x)]\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết \(\displaystyle\int\limits_{\ln2}^{\ln5}(x+1)\mathrm{e}^x \mathrm{\,d}x=a\ln5+b\ln2\), với \(a,\,b\) là các số nguyên. Tính \(T=3a-2b\).

\(T=19\)
\(T=-4\)
\(T=11\)
\(T=-16\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính \(I=\displaystyle\int\limits_0^{\tfrac{\pi}{3}}\sin{2x}\mathrm{\,d}x\).

\(I=-\dfrac{1}{4}\)
\(I=0,019\)
\(I=-\dfrac{3}{4}\)
\(I=\dfrac{3}{4}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho \(\displaystyle\int\limits_{-1}^5f(x)\mathrm{\,d}x=9\). Tính \(I=\displaystyle\int\limits_0^2f(3x-1)\mathrm{\,d}x\).

\(I=26\)
\(I=9\)
\(I=3\)
\(I=27\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính \(I=\displaystyle\int\limits_0^2(2x-x^3)\mathrm{\,d}x\).

\(I=0\)
\(I=10\)
\(I=-4\)
\(I=-10\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho \(\displaystyle\int\limits_{-1}^2f(x)\mathrm{\,d}x=5\) và \(\displaystyle\int\limits_0^2f(x)\mathrm{\,d}x=2\). Tính \(I=\displaystyle\int\limits_{-1}^0f(x)\mathrm{\,d}x\).

\(I=7\)
\(I=-3\)
\(I=3\)
\(I=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho \(\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=-3\) và \(\displaystyle\int\limits_a^b g(x)\mathrm{\,d}x=4\). Tính \(I=\displaystyle\int\limits_a^b [4f(x)-3g(x)]\mathrm{\,d}x\).

\(I=25\)
\(I=-24\)
\(I=24\)
\(I=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai hàm số \(f(x)\) và \(g(x)\) liên tục trên đoạn \([a;b]\). Mệnh đề nào dưới đây sai?

\(\displaystyle\int\limits_a^b[f(x)-g(x)]\mathrm{\,d}x = \displaystyle\int\limits_a^b f(x)\mathrm{\,d}x - \displaystyle\int\limits_a^b g(x)\mathrm{\,d}x\)
\(\displaystyle\int\limits_a^b kf(x)\mathrm{\,d}x =k \displaystyle\int\limits_a^b f(x)\mathrm{\,d}x\) với \(k\) là hằng số
\(\displaystyle\int\limits_a^b [f(x)\cdot {g(x)}]\mathrm{\,d}x=\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x \cdot {\displaystyle\int\limits_a^b g(x)\mathrm{\,d}x}\)
\(\displaystyle\int\limits_a^b [f(x)+g(x)]\mathrm{\,d}x = \displaystyle\int\limits_a^b f(x)\mathrm{\,d}x+\displaystyle\int\limits_a^b g(x)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(f(x)\) liên tục trên đoạn \([a;b]\) và \(a< c< b\). Mệnh đề nào dưới đây sai?

\(\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x+\displaystyle\int\limits_a^c f(x)\mathrm{\,d}x=\displaystyle\int\limits_b^c f(x)\mathrm{\,d}x\)
\(\displaystyle\int\limits_a^c f(x)\mathrm{\,d}x+\displaystyle\int\limits_c^b f(x)\mathrm{\,d}x=\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x\)
\(\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=-\displaystyle\int\limits_b^a f(x)\mathrm{\,d}x\)
\(\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x+\displaystyle\int\limits_b^a f(x)\mathrm{\,d}x=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Biết \(F(x)\) là một nguyên hàm của \(f(x)\) trên đoạn \([-2;3]\), \(\displaystyle\int\limits_{-2}^3f(x)\mathrm{\,d}x=12\) và \(F(3)=7\). Tính \(F(-2)\). 

\(F(-2)=19\)
\(F(-2)=2\)
\(F(-2)=5\)
\(F(-2)=-5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(f(x)\)  liên tục trên đoạn \([a;b]\) và \(F(x)\) là một nguyên hàm của \(f(x)\) trên đoạn \([a;b]\). Mệnh đề nào dưới đây đúng?

\(\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=F(a)-F(b)\)
\(\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=f(b)-f(a)\)
\(\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=f(a)-f(b)\)
\(\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=F(b)-F(a)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Hàm số nào dưới đây liên tục trên tập xác định của nó?

\(f(x)=\dfrac{2x+3}{3x-2}\)
\(f(x)=\sqrt{x-2019}\)
\(f(x)=\sqrt{x+2019}\)
\(f(x)=\sqrt{x^2+2019}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm mệnh đề đúng trong số các mệnh đề sau:

Nếu \(f(x)\) liên tục trên đoạn \([a;b]\) và \(f(a)\cdot f(b)>0\) thì phương trình \(f(x)=0\) có ít nhất một nghiệm trên khoảng \((a;b)\)
Nếu \(f(x)\) liên tục trên đoạn \([a;b]\) và \(f(a)\cdot f(b)<0\) thì phương trình \(f(x)=0\) có ít nhất một nghiệm trên khoảng \((a;b)\)
Nếu \(f(x)\) liên tục trên khoảng \((a;b)\) và \(f(a)\cdot f(b)<0\) thì phương trình \(f(x)=0\) có ít nhất một nghiệm trên khoảng \((a;b)\)
Nếu \(f(x)\) liên tục trên đoạn \([a;b]\) và \(f(a)\cdot f(b)<0\) thì phương trình \(f(x)=0\) có ít nhất một nghiệm trên đoạn \([a;b]\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Hàm số \(f(x)=\begin{cases}\dfrac{\sqrt{1-3x+x^2}-\sqrt{1+x}}{x} &\text{khi }x\neq0\\
m &\text{khi }x=0\end{cases}\) liên tục tại \(x_0=0\) khi

\(m=4\)
\(m=-1\)
\(m=3\)
\(m=-2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hàm số \(f(x)=\sqrt{x-3}\) gián đoạn tại điểm nào sau đây?

\(2018\)
\(2001\)
\(4\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Hàm số \(f(x)\) liên tục tại \(x_0\) nếu

\(f\left(x_0\right)\) không tồn tại
\(\lim\limits_{x\to x_0^+}f(x)\neq\lim\limits_{x\to x_0^-}f(x)\)
\(\lim\limits_{x\to x_0}f(x)\ne f\left(x_0\right)\)
\(\lim\limits_{x\to x_0}f(x)=f\left(x_0\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hàm số nào sau đây liên tục trên \(\Bbb{R}\)?

\(f(x)=2x^3-2017\)
\(f(x)=\sqrt{x^2-3x+2}\)
\(f(x)=\dfrac{3x+2}{x-3}\)
\(f(x)=\tan 3x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Giới hạn \(\lim\limits_{x\to2}\dfrac{x^2+3x-10}{3x^2-5x-2}\) bằng

\(1\)
\(\dfrac{1}{3}\)
\(-1\)
\(\dfrac{7}{5}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giới hạn \(\lim\limits_{x\to-1}\dfrac{x^2-3}{x^3+2}\) bằng

\(-2\)
\(2\)
\(\dfrac{4}{3}\)
\(\dfrac{2}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giới hạn \(\lim\limits_{x\to3^-}\dfrac{x^2+2x-15}{|x-3|}\) bằng

\(8\)
\(-\infty\)
\(-8\)
Không tồn tại
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự