Ngân hàng bài tập

Toán học: Hàm số

A

Cho hàm số \(f\left(x\right)=\dfrac{ax+1}{bx+c}\) \(\left(a,b,c\in\mathbb{R}\right)\) có bảng biến thiên như sau:

Trong các số \(a,\,b\) và \(c\) có bao nhiêu số dương?

\(2\)
\(3\)
\(1\)
\(0\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho hàm số $$f\left(x\right)=\dfrac{1}{3}x^3+mx^2+4x+3$$đồng biến trên \(\mathbb{R}\)?

\(5\)
\(4\)
\(3\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Diện tích \(S\) của hình phẳng giới hạn bởi các đường \(y=2x^2\), \(y=-1,\,x=0\) và \(x=1\) được tính bởi công thức nào dưới đây?

\(S=\pi\displaystyle\int\limits_0^1\left(2x^2+1\right)\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_0^1\left(2x^2-1\right)\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_0^1\left(2x^2+1\right)^2\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_0^1\left(2x^2+1\right)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Xét \(\displaystyle\int\limits_0^2x\cdot\mathrm{e}^{x^2}\mathrm{\,d}x\), nếu đặt \(u=x^2\) thì \(\displaystyle\int\limits_0^2x\cdot\mathrm{e}^{x^2}\mathrm{\,d}x\) bằng

\(2\displaystyle\int\limits_0^2\mathrm{e}^u\mathrm{\,d}u\)
\(2\displaystyle\int\limits_0^4\mathrm{e}^u\mathrm{\,d}u\)
\(\dfrac{1}{2}\displaystyle\int\limits_0^2\mathrm{e}^u\mathrm{\,d}u\)
\(\dfrac{1}{2}\displaystyle\int\limits_0^4\mathrm{e}^u\mathrm{\,d}u\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Số giao điểm của đồ thị hàm số \(y=x^3-3x+1\) và trục hoành là

\(3\)
\(0\)
\(2\)
\(1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị nhỏ nhất của hàm số \(y=x^4-10x^2+2\) trên đoạn \(\left[-1;2\right]\) bằng

\(2\)
\(-23\)
\(-22\)
\(-7\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(f\left(x\right)\) có bảng xét dấu của \(f'\left(x\right)\) như sau:

Số điểm cực trị của hàm số đã cho là

\(3\)
\(0\)
\(2\)
\(1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nếu \(\displaystyle\int\limits_0^1f\left(x\right)\mathrm{\,d}x=4\) thì \(\displaystyle\int\limits_0^12f\left(x\right)\mathrm{\,d}x\) bằng

\(16\)
\(4\)
\(2\)
\(8\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=f\left(x\right)\) có đồ thị trong hình vẽ trên. Số nghiệm của phương trình \(f\left(x\right)=-1\) là

\(3\)
\(2\)
\(1\)
\(4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tiệm cận ngang của đồ thị hàm số \(y=\dfrac{x-2}{x+1}\) là

\(y=-2\)
\(y=1\)
\(x=-1\)
\(x=2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình trên?

\(y=x^3-3x\)
\(y=-x^3+3x\)
\(y=x^4-2x^2\)
\(y=-x^4+2x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(y=f\left(x\right)\) có bảng biến thiên như sau:

Hàm số đã cho đạt cực đại tại điểm

\(x=-2\)
\(x=2\)
\(x=1\)
\(x=-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(f\left(x\right)\) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

\(\left(-\infty;-1\right)\)
\(\left(0;1\right)\)
\(\left(-1;0\right)\)
\(\left(-\infty;0\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Hàm số \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên khoảng \(K\) nếu

\(F'(x)=-f(x),\,\forall x\in K\)
\(f'(x)=F(x),\,\forall x\in K\)
\(F'(x)=f(x),\,\forall x\in K\)
\(f'(x)=-F(x),\,\forall x\in K\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập xác định của hàm số \(y=\log_2x\) là

\([0;+\infty)\)
\((-\infty;+\infty)\)
\((0;+\infty)\)
\([2;+\infty)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Kí hiệu \((H)\) là hình phẳng giới hạn bởi đồ thị \(y=x^2-ax\) với trục hoành (\(a\neq0\)). Quay hình \((H)\) xung quanh trục hoành ta thu được khối tròn xoay có thể tích \(V=\dfrac{16\pi}{15}\). Tìm \(a\).

\(a=-2\)
\(a=-3\)
\(a=\pm2\)
\(a=2\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình phẳng \((D)\) giới hạn bởi đồ thị hàm số \(y=\sqrt{x}\), hai đường thẳng \(x=1\), \(x=2\) và trục hoành. Tính thể tích khối tròn xoay tạo thành khi quay \((D)\) quanh trục hoành.

\(3\pi\)
\(\dfrac{3}{2}\)
\(\dfrac{3\pi}{2}\)
\(\dfrac{2\pi}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình \(D\) giới hạn bởi các đường \(y=x^2-2\) và \(y=-|x|\). Khi đó diện tích của hình \(D\) là

\(\dfrac{13}{3}\)
\(\dfrac{7\pi}{3}\)
\(\dfrac{7}{3}\)
\(\dfrac{13\pi}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tính diện tích hình phẳng tạo thành bởi parabol \(y=x^2\), đường thẳng \(y=-x+2\) và trục hoành trên đoạn \([0;2]\) (phần gạch sọc trong hình vẽ).

\(\dfrac{5}{6}\)
\(\dfrac{7}{6}\)
\(\dfrac{2}{3}\)
\(\dfrac{3}{5}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Diện tích hình phẳng \((H)\) giới hạn bởi đồ thị của hàm số \(y=f(x)\), trục hoành và hai đường thẳng \(x=a\), \(x=b\) (\(a<b\) và \(f(x)\) liên tục trên \([a;b]\)) (phần gạch sọc trong hình vẽ) tính theo công thức

\(S=-\displaystyle\int\limits_{a}^{c}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{c}^{b}f(x)\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\)
\(S=\left|\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\right|\)
\(S=\displaystyle\int\limits_{a}^{c}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{c}^{b}f(x)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự