Ngân hàng bài tập

Toán học: Hàm số

B

Tìm tiệm cận ngang của đồ thị hàm số \(f(x)=1+\dfrac{2x+2}{x-1}\).

\(x=1\)
\(y=1\)
\(y=2\)
\(y=3\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đường tiệm cận ngang của đồ thị hàm số \(y=\dfrac{2-2x}{x+1}\) là

\(y=-2\)
\(x=-1\)
\(x=-2\)
\(y=2\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đường tiệm cận ngang của đồ thị hàm số \(y=\dfrac{x-3}{x-1}\) là

\(y=5\)
\(y=0\)
\(x=1\)
\(y=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đường tiệm cận ngang của đồ thị hàm số \(y=\dfrac{2x-3}{x+4}\) là

\(x=-4\)
\(y=2\)
\(x=4\)
\(y=-\dfrac{3}{4}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Diện tích hình phẳng giới hạn bởi hai đường \(y=x^2-4\) và \(y=2x-4\) bằng

\(36\)
\(\dfrac{4}{3}\)
\(\dfrac{4\pi}{3}\)
\(36\pi\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Biết \(F\left(x\right)=x^2\) là một nguyên hàm của hàm số \(f\left(x\right)\) trên \(\mathbb{R}\). Giá trị của \(\displaystyle\int\limits_1^2\left[2+f\left(x\right)\right]\mathrm{d}x\) bằng

\(5\)
\(3\)
\(\dfrac{13}{3}\)
\(\dfrac{7}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Biết \(\displaystyle\int\limits_1^3f\left(x\right)\mathrm{d}x=3\). Giá trị của \(\displaystyle\int\limits_1^32f\left(x\right)\mathrm{d}x\) bằng

\(5\)
\(9\)
\(6\)
\(\dfrac{3}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số \(f\left(x\right)=\dfrac{x}{\sqrt{x^2+2}}\). Họ tất cả các nguyên hàm của hàm số \(g\left(x\right)=\left(x+1\right)\cdot f'\left(x\right)\) là

\(\dfrac{x^2+2x-2}{2\sqrt{x^2+2}}+C\)
\(\dfrac{x-2}{\sqrt{x^2+2}}+C\)
\(\dfrac{x^2+x+2}{\sqrt{x^2+2}}+C\)
\(\dfrac{x+2}{2\sqrt{x^2+2}}+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

\(\displaystyle\int x^2\mathrm{\,d}x\) bằng

\(2x+C\)
\(\dfrac{1}{3}{x^3}+C\)
\(x^3+C\)
\(3x^3+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập xác định của hàm số \(y=\log_5x\) là

\(\left[0;+\infty\right)\)
\(\left(-\infty;0\right)\)
\(\left(0;+\infty\right)\)
\(\left(-\infty;+\infty\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Xét các số thực không âm \(x\) và \(y\) thỏa mãn \(2x+y\cdot4^{x+y-1}\geq3\). Giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+4x+6y\) bằng

\(\dfrac{33}{4}\)
\(\dfrac{65}{8}\)
\(\dfrac{49}{8}\)
\(\dfrac{57}{8}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị nhỏ nhất của hàm số \(f\left(x\right)=x^3-24x\) trên đoạn \(\left[2;19\right]\) bằng

\(32\sqrt{2}\)
\(-40\)
\(-32\sqrt{2}\)
\(-45\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tiệm cận ngang của đồ thị hàm số \(y=\dfrac{4x+1}{x-1}\) là

\(y=\dfrac{1}{4}\)
\(y=4\)
\(y=1\)
\(y=-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số bậc bốn \(f\left(x\right)\) có bảng biến thiên như sau:

Số điểm cực trị của hàm số \(g\left(x\right)=x^4\left[f\left(x+1\right)\right]^2\) là

\(11\)
\(9\)
\(7\)
\(5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y=\dfrac{x+4}{x+m}\) đồng biến trên khoảng \(\left(-\infty;-7\right)\) là

\(\left[4;7\right)\)
\(\left(4;7\right]\)
\(\left(4;7\right)\)
\(\left(4;+\infty\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(f\left(x\right)\) có bảng biến thiên như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

\(\left(-\infty;-1\right)\)
\(\left(0;1\right)\)
\(\left(-1;1\right)\)
\(\left(-1;0\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(f\left(x\right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu của \(f'\left(x\right)\) như sau:

Số điểm cực đại của hàm số đã cho là

\(4\)
\(1\)
\(2\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm \(f\left(x\right)\) có bảng biến thiên như sau:

Giá trị cực tiểu của hàm số đã cho bằng

\(3\)
\(-5\)
\(0\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số bậc ba \(y=f(x)\) có đồ thị là đường cong trong hình.

Số nghiệm thực phân biệt của phương trình \(f\left(x^3f(x)\right)+1=0\) là

\(8\)
\(5\)
\(6\)
\(4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số \(y=ax^3+bx^2+cx+d\) (\(a,\,b,\,c,\,d\in\mathbb{R}\)) có đồ thị là đường cong trong hình.

Có bao nhiêu số dương trong các số \(a\), \(b\), \(c\), \(d\)?

\(4\)
\(1\)
\(2\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự