Tìm khẳng định sai trong các khẳng định sau:
| \(\sin170^\circ=-\sin10^\circ\) | |
| \(\cos5^\circ=-\cos175^\circ\) | |
| \(\tan150^\circ=-\tan30^\circ\) | |
| \(\cot40^\circ=-\cot140^\circ\) |
Cho \(0<\alpha<\dfrac{\pi}{2}\). Chọn khẳng định sai trong các khẳng định sau:
| \(\cos\left(\alpha+\pi\right)>0\) | |
| \(\sin\alpha>0\) | |
| \(\tan\left(\alpha-\pi\right)>0\) | |
| \(\cot\left(\pi-\alpha\right)<0\) |
Cho góc \(\alpha\) thỏa mãn \(\tan\alpha+\cot\alpha=2\). Tính $$P=\tan^2\alpha+\cot^2\alpha$$
| \(P=1\) | |
| \(P=2\) | |
| \(P=3\) | |
| \(P=4\) |
Cho góc \(\alpha\) thỏa mãn \(\sin\alpha\cdot\cos\alpha=\dfrac{12}{25}\) và \(\sin\alpha+\cos\alpha>0\). Tính $$P=\sin^3\alpha+\cos^3\alpha$$
| \(P=\dfrac{91}{125}\) | |
| \(P=\dfrac{49}{25}\) | |
| \(P=\dfrac{7}{5}\) | |
| \(P=\dfrac{1}{9}\) |
Cho góc \(\alpha\) thỏa mãn \(\sin\alpha+\cos\alpha=\dfrac{5}{4}\). Tính $$P=\sin\alpha\cdot\cos\alpha$$
| \(P=\dfrac{9}{16}\) | |
| \(P=\dfrac{9}{32}\) | |
| \(P=\dfrac{9}{8}\) | |
| \(P=\dfrac{1}{8}\) |
Cho góc \(\alpha\) thỏa mãn \(\tan\alpha=5\). Tính $$P=\sin^4\alpha-\cos^4\alpha.$$
| \(P=\dfrac{9}{13}\) | |
| \(P=\dfrac{10}{13}\) | |
| \(P=\dfrac{11}{13}\) | |
| \(P=\dfrac{12}{13}\) |
Cho góc \(\alpha\) thỏa mãn \(\tan\alpha=-\dfrac{4}{3}\) và \(\dfrac{2017\pi}{2}<\alpha<\dfrac{2019\pi}{2}\). Tính \(\sin\alpha\).
| \(\sin\alpha=-\dfrac{3}{5}\) | |
| \(\sin\alpha=\dfrac{3}{5}\) | |
| \(\sin\alpha=-\dfrac{4}{5}\) | |
| \(\sin\alpha=\dfrac{4}{5}\) |
Cho góc \(\alpha\) thỏa mãn \(\cos\alpha=\dfrac{3}{5}\) và \(-\dfrac{\pi}{2}<\alpha<0\). Tính $$P=\sqrt{5+3\tan\alpha}+\sqrt{6-4\cot\alpha}.$$
| \(P=4\) | |
| \(P=-4\) | |
| \(P=6\) | |
| \(P=-6\) |
Cho góc \(\alpha\) thỏa mãn \(\sin\alpha=\dfrac{1}{3}\) và \(90^\circ<\alpha<180^\circ\). Tính \(P=\dfrac{2\tan\alpha+3\cot\alpha+1}{\tan\alpha+\cot\alpha}\).
| \(P=\dfrac{19+2\sqrt{2}}{9}\) | |
| \(P=\dfrac{19-2\sqrt{2}}{9}\) | |
| \(P=\dfrac{26-2\sqrt{2}}{9}\) | |
| \(P=\dfrac{26+2\sqrt{2}}{9}\) |
Cho góc \(\alpha\) thỏa mãn \(\sin\alpha=\dfrac{3}{5}\) và \(\dfrac{\pi}{2}<\alpha<\pi\). Tính \(P=\dfrac{\tan\alpha}{1+\tan^2\alpha}\).
| \(P=-3\) | |
| \(P=\dfrac{3}{7}\) | |
| \(P=\dfrac{12}{25}\) | |
| \(P=-\dfrac{12}{25}\) |
Cho góc \(\alpha\) thỏa mãn \(\tan\alpha=2\) và \(180^\circ<\alpha<270^\circ\). Tính \(P=\cos\alpha+\sin\alpha\).
| \(P=-\dfrac{3\sqrt{5}}{5}\) | |
| \(P=1-\sqrt{5}\) | |
| \(P=\dfrac{3\sqrt{5}}{2}\) | |
| \(P=\dfrac{\sqrt{5}-1}{2}\) |
Cho góc \(\alpha\) thỏa mãn \(\cot\alpha=\dfrac{3}{4}\) và \(0^\circ<\alpha<90^\circ\). Khẳng định nào sau đây đúng?
| \(\cos\alpha=-\dfrac{4}{5}\) | |
| \(\cos\alpha=\dfrac{4}{5}\) | |
| \(\sin\alpha=\dfrac{4}{5}\) | |
| \(\sin\alpha=-\dfrac{4}{5}\) |
Cho góc \(\alpha\) thỏa mãn \(\sin\alpha=\dfrac{3}{5}\) và \(90^\circ<\alpha<180^\circ\). Khẳng định nào sau đây đúng?
| \(\cot\alpha=-\dfrac{4}{5}\) | |
| \(\cos\alpha=\dfrac{4}{5}\) | |
| \(\tan\alpha=\dfrac{5}{4}\) | |
| \(\cos\alpha=-\dfrac{4}{5}\) |
Cho góc \(\alpha\) thỏa mãn \(\cos\alpha=-\dfrac{12}{13}\) và \(\dfrac{\pi}{2}<\alpha<\pi\). Tính \(\tan\alpha\).
| \(\tan\alpha=-\dfrac{12}{5}\) | |
| \(\tan\alpha=\dfrac{5}{12}\) | |
| \(\tan\alpha=-\dfrac{5}{12}\) | |
| \(\tan\alpha=\dfrac{12}{5}\) |
Cho góc \(\alpha\) thỏa mãn \(\cos\alpha=-\dfrac{\sqrt{5}}{3}\) và \(\pi<\alpha<\dfrac{3\pi}{2}\). Tính \(\tan\alpha\).
| \(\tan\alpha=-\dfrac{3}{\sqrt{5}}\) | |
| \(\tan\alpha=\dfrac{2}{\sqrt{5}}\) | |
| \(\tan\alpha=-\dfrac{4}{\sqrt{5}}\) | |
| \(\tan\alpha=-\dfrac{2}{\sqrt{5}}\) |
Cho góc \(\alpha\) thỏa mãn \(\sin\alpha=\dfrac{12}{13}\) và \(\dfrac{\pi}{2}<\alpha<\pi\). Tính \(\cos\alpha\).
| \(\cos\alpha=\dfrac{1}{13}\) | |
| \(\cos\alpha=\dfrac{5}{13}\) | |
| \(\cos\alpha=-\dfrac{5}{13}\) | |
| \(\cos\alpha=-\dfrac{1}{13}\) |
Chọn khẳng định đúng trong các khẳng định sau:
| \(\sin\left(x+k2\pi\right)=\sin x\) | |
| \(\sin\left(x+k\pi\right)=\sin x\) | |
| \(\sin\left(x+k\pi\right)=-\sin x\) | |
| \(\cos\left(x+k\pi\right)=-\cos x\) |
Cho \(\dfrac{\pi}{2}<\alpha<\pi\). Giá trị lượng giác nào sau đây luôn dương?
| \(\sin\left(\pi+\alpha\right)\) | |
| \(\cos\left(\dfrac{\pi}{2}-\alpha\right)\) | |
| \(\cos(-\alpha)\) | |
| \(\tan(\pi+\alpha)\) |
Cho \(0<\alpha<\dfrac{\pi}{2}\). Khẳng định nào sau đây đúng?
| \(\cot\left(\alpha+\dfrac{\pi}{2}\right)>0\) | |
| \(\cot\left(\alpha+\dfrac{\pi}{2}\right)\geq0\) | |
| \(\tan(\alpha+\pi)<0\) | |
| \(\tan(\alpha+\pi)>0\) |
Cho \(0<\alpha<\dfrac{\pi}{2}\). Khẳng định nào sau đây đúng?
| \(\sin(\alpha-\pi)\geq0\) | |
| \(\sin(\alpha-\pi)\leq0\) | |
| \(\sin(\alpha-\pi)<0\) | |
| \(\sin(\alpha-\pi)>0\) |