Độ dài của vectơ \(\vec{u}=(5;-12)\) bằng
| \(-7\) | |
| \(13\) | |
| \(\pm13\) | |
| \(169\) |
Cho ba số phức \(z_1,\,z_2,\,z_3\) phân biệt thỏa mãn \(\left|z_1\right|=\left|z_2\right|=\left|z_3\right|=3\) và \(\overline{z_1}+\overline{z_2}=\overline{z_3}\). Biết \(z_1,\,z_2,\,z_3\) lần lượt được biểu diễn bởi các điểm \(A,\,B,\,C\) trên mặt phẳng phức. Tính góc \(\widehat{ACB}\).
| \(150^\circ\) | |
| \(90^\circ\) | |
| \(120^\circ\) | |
| \(45^\circ\) |
Cho vectơ \(\vec{a}=(1;-2)\). Với giá trị nào của \(y\) thì vectơ \(\vec{b}=(-3;y)\) vuông góc với \(\vec{a}\)?
| \(-6\) | |
| \(6\) | |
| \(-\dfrac{3}{2}\) | |
| \(3\) |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) biết \(A(1;3)\), \(B(-2;-2)\) và \(C(3;1)\). Tính cosin góc \(A\) của tam giác \(ABC\).
| \(\cos A=\dfrac{2}{\sqrt{17}}\) | |
| \(\cos A=\dfrac{1}{\sqrt{17}}\) | |
| \(\cos A=-\dfrac{2}{\sqrt{17}}\) | |
| \(\cos A=-\dfrac{1}{\sqrt{17}}\) |
Trong mặt phẳng \(Oxy\), cho ba điểm \(A(3;6)\), \(B(x;-2)\) và \(C(2;y)\). Tính \(\overrightarrow{OA}\cdot\overrightarrow{BC}\) theo \(x\) và \(y\).
| \(\overrightarrow{OA}\cdot\overrightarrow{BC}=-3x+6y+12\) | |
| \(\overrightarrow{OA}\cdot\overrightarrow{BC}=0\) | |
| \(\overrightarrow{OA}\cdot\overrightarrow{BC}=-3x+6y+18\) | |
| \(\overrightarrow{OA}\cdot\overrightarrow{BC}=3x+6y-12\) |
Trong mặt phẳng \(Oxy\), cho hai điểm \(M(-2;-1)\) và \(N(3;-1)\). Tính số đo góc \(\widehat{MON}\).
| \(\dfrac{\sqrt{2}}{2}\) | |
| \(-\dfrac{\sqrt{2}}{2}\) | |
| \(-135^\circ\) | |
| \(135^\circ\) |
Trong mặt phẳng \(Oxy\), góc giữa hai vectơ \(\vec{a}=(4;3)\) và \(\vec{b}=(-1;-7)\) có số đo bằng
| \(135^\circ\) | |
| \(45^\circ\) | |
| \(30^\circ\) | |
| \(60^\circ\) |
Trong mặt phẳng \(Oxy\), cho \(\vec{a}=(-3;4)\), \(\vec{b}=(4;3)\). Kết luận nào sau đây sai?
| \(\left|\vec{a}\right|=\left|\vec{b}\right|\) | |
| \(\vec{a},\,\vec{b}\) cùng phương | |
| \(\vec{a}\bot\vec{b}\) | |
| \(\vec{a}\cdot\vec{b}=0\) |
Trong mặt phẳng \(Oxy\), cho vectơ \(\vec{a}=(3;-4)\). Đẳng thức nào sau đây đúng?
| \(\left|\vec{a}\right|=5\) | |
| \(\left|\vec{a}\right|=3\) | |
| \(\left|\vec{a}\right|=4\) | |
| \(\left|\vec{a}\right|=7\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(1;-3)\) và \(\vec{b}=(2;5)\). Tính \(\vec{a}\left(\vec{a}+2\vec{b}\right)\).
| \(26\) | |
| \(-16\) | |
| \(16\) | |
| \(36\) |
Trong mặt phẳng \(Oxy\), cho \(\vec{a}=(2;5)\) và \(\vec{b}=(3;-7)\). Tính góc giữa hai vectơ \(\vec{a}\) và \(\vec{b}\).
| \(60^\circ\) | |
| \(45^\circ\) | |
| \(135^\circ\) | |
| \(120^\circ\) |
Trong mặt phẳng \(Oxy\), cho \(\vec{u}=\vec{i}+3\vec{j}\) và \(\vec{v}=(2;-1)\). Tính \(\vec{u}\cdot\vec{v}\).
| \(\vec{u}\cdot\vec{v}=-1\) | |
| \(\vec{u}\cdot\vec{v}=1\) | |
| \(\vec{u}\cdot\vec{v}=(2;-3)\) | |
| \(\vec{u}\cdot\vec{v}=5\sqrt{2}\) |
Trong mặt phẳng \(Oxy\), cho \(\vec{a}=(2;3)\) và \(\vec{b}=(4;-1)\). Tích \(\vec{a}\cdot\vec{b}\) bằng
| \(11\) | |
| \(5\) | |
| \(4\) | |
| \(-2\) |
Cho hình chóp $S.ABC$ có tam giác $ABC$ vuông cân tại $A$, $AB=AC=a$ và $SA=SB=SC=a$. Tính $\overrightarrow{AB}\cdot\overrightarrow{SC}$.
| $\overrightarrow{AB}\cdot\overrightarrow{SC}=-\dfrac{a^2}{2}$ | |
| $\overrightarrow{AB}\cdot\overrightarrow{SC}=\dfrac{a^2}{2}$ | |
| $\overrightarrow{AB}\cdot\overrightarrow{SC}=\dfrac{a^2\sqrt{3}}{2}$ | |
| $\overrightarrow{AB}\cdot\overrightarrow{SC}=-\dfrac{a^2\sqrt{3}}{2}$ |
Cho 2 vectơ $\overrightarrow{u},\,\overrightarrow{v}$ có $\big|\overrightarrow{u}\big|=2$, $\big|\overrightarrow{v}\big|=5$ và $\big(\overrightarrow{u},\overrightarrow{v}\big)=30^\circ$. Tính $\overrightarrow{u}\cdot\overrightarrow{v}$.
| $\overrightarrow{u}\cdot\overrightarrow{v}=5\sqrt{2}$ | |
| $\overrightarrow{u}\cdot\overrightarrow{v}=5$ | |
| $\overrightarrow{u}\cdot\overrightarrow{v}=10$ | |
| $\overrightarrow{u}\cdot\overrightarrow{v}=5\sqrt{3}$ |
Trong mặt phẳng $Oxy$, cho hai đường thẳng song song $d\colon2x-3y-1=0$ và $d'\colon2x-3y+5=0$. Phép tịnh tiến theo vectơ nào sau đây không thể biến $d$ thành $d'$?
| $\overrightarrow{u}=(0;2)$ | |
| $\overrightarrow{u}=(-3;0)$ | |
| $\overrightarrow{u}=(3;4)$ | |
| $\overrightarrow{u}=(-1;1)$ |
Trong mặt phẳng $Oxy$, cho đường thẳng $d\colon2x-y+1=0$. Để phép tịnh tiến theo vectơ $\overrightarrow{v}$ biến $d$ thành chính nó thì $\overrightarrow{v}$ có thể là vectơ nào sau đây?
| $\overrightarrow{v}=(2;1)$ | |
| $\overrightarrow{v}=(2;-1)$ | |
| $\overrightarrow{v}=(1;2)$ | |
| $\overrightarrow{v}=(-1;2)$ |
Trong mặt phẳng $Oxy$, cho hai đường thẳng song song $d\colon x+y+1=0$ và $d'\colon x+y-1=0$. Biết rằng phép tịnh tiến $\mathrm{T}_{\overrightarrow{v}}$ biến đường thẳng $d$ thành đường thẳng $d'$ và vectơ $\overrightarrow{v}$ cùng phương với vectơ đơn vị $\overrightarrow{i}$. Hãy tìm tọa độ vectơ $\overrightarrow{v}$.
| $\overrightarrow{v}=(2;0)$ | |
| $\overrightarrow{v}=(0;2)$ | |
| $\overrightarrow{v}=(0;-2)$ | |
| $\overrightarrow{v}=(-2;0)$ |
Cho lưới tọa độ như hình vẽ.

Tìm tọa độ vectơ $\overrightarrow{v}$ biết rằng phép tịnh tiến $\mathrm{T}_{\overrightarrow{v}}$ biến hình $A$ thành hình $B$.
| $\overrightarrow{v}=(8;-5)$ | |
| $\overrightarrow{v}=(-8;5)$ | |
| $\overrightarrow{v}=(8;-3)$ | |
| $\overrightarrow{v}=(8;3)$ |
Cho lưới tọa độ như hình vẽ.

Tìm tọa độ vectơ $\overrightarrow{v}$ biết rằng phép tịnh tiến $\mathrm{T}_{\overrightarrow{v}}$ biến tam giác $ABC$ thành tam giác $A'B'C'$.
| $\overrightarrow{v}=(8;-4)$ | |
| $\overrightarrow{v}=(-8;4)$ | |
| $\overrightarrow{v}=(8;-3)$ | |
| $\overrightarrow{v}=(8;3)$ |