Ngân hàng bài tập

Giáo viên: Sàng Khôn

C

Họ nguyên hàm của hàm số $f(x)=x-\mathrm{e}^x$ là

$x^2-\mathrm{e}^{x+1}+C$
$\dfrac{x^2}{2}-\dfrac{\mathrm{e}^{x+1}}{x+1}+C$
$1-\mathrm{e}^x+C$
$\dfrac{x^2}{2}-\mathrm{e}^x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Số phức có phần thực bằng $3$ và phần ảo bằng $2$ là

$3+2i$
$2+3i$
$2-3i$
$3-2i$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho hai điểm $A(1;1;-2)$ và $B(3;0;1)$. Vectơ $\overrightarrow{AB}$ có tọa độ là

$(4;1;-1)$
$\left(2;\dfrac{1}{2};-\dfrac{1}{2}\right)$
$(2;-1;3)$
$(-2;1;-3)$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong mặt phẳng tọa độ, tìm tập hợp các điểm biểu diễn số phức $z$ thỏa mãn $\dfrac{z+4i}{z-4i}$ là một số thực dương.

Trục $Oy$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $4i$, $J$ là điểm biểu diễn $-4i$)
Trục $Oy$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $2i$, $J$ là điểm biểu diễn $-2i$)
Đoạn $IJ$ (với $I$ là điểm biểu diễn $4i$, $J$ là điểm biểu diễn $-4i$)
Trục $Ox$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $4$, $J$ là điểm biểu diễn $-4$)
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Tính môđun của số phức $z$ thỏa mãn $(1+i)z|z|-1=(i-2)|z|$.

$|z|=1$
$|z|=4$
$|z|=2$
$|z|=3$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Gọi $z_1$ và $z_2$ là hai nghiệm phức của phương trình $z^2-2z+5=0$, trong đó $z_2$ có phần ảo âm. Tìm phần ảo $b$ của số phức $w=\left[\left(z_1-i\right)\left(z_2+2i\right)\right]^{2018}$.

$b=2^{1009}$
$b=2^{2017}$
$b=-2^{2018}$
$b=2^{2018}$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho mặt cầu $(S)\colon x^2+y^2+z^2+4x-8y+2z+1=0$ và mặt phẳng $(P)\colon2x+y+3z-3=0$. Biết $(P)$ cắt $(S)$ theo giao tuyến là một đường tròn, tìm tọa độ tâm $I$ và bán kính $r$ của đường tròn đó.

$I\left(\dfrac{8}{7};\dfrac{25}{7};-\dfrac{16}{7}\right)$ và $r=\dfrac{2\sqrt{854}}{3}$
$I\left(\dfrac{8}{7};-\dfrac{31}{7};-\dfrac{2}{7}\right)$ và $r=\dfrac{\sqrt{854}}{5}$
$I\left(-\dfrac{8}{7};\dfrac{31}{7};\dfrac{2}{7}\right)$ và $r=\dfrac{\sqrt{854}}{7}$
$I\left(-\dfrac{8}{7};\dfrac{31}{7};\dfrac{2}{7}\right)$ và $r=\dfrac{\sqrt{854}}{3}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết $\displaystyle\displaystyle\int\limits f(t)\mathrm{\,d}t=t^2+3t+C$. Tính $\displaystyle\displaystyle\int\limits f\left(\sin2x\right)\cos2x\mathrm{\,d}x$.

$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^2x+6\sin{x}+C$
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^22x+6\sin2x+C$
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin^22x+\dfrac{3}{2}\sin2x+C$
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\sin^22x+3\sin2x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hai hàm số $f(x)$, $g(x)$ liên tục trên đoạn $[a;b]$ và $a< c< b$. Mệnh đề nào dưới đây sai?

$\displaystyle\displaystyle\int\limits_a^b\left[f(x)+g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x+\displaystyle\displaystyle\int\limits_a^b g(x)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\limits_a^b k\cdot f(x)\mathrm{\,d}x= k\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x$ với $k$ là hằng số
$\displaystyle\displaystyle\int\limits_a^b \dfrac{f(x)}{g(x)}\mathrm{\,d}x=\dfrac{\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x}{\displaystyle\displaystyle\int\limits_a^b g(x)\mathrm{\,d}x}$
$\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=\displaystyle\displaystyle\int\limits_a^c f(x)\mathrm{\,d}x+\displaystyle\displaystyle\int\limits_c^b f(x)\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hai hàm số $f(x)$ và $g(x)$ liên tục trên $K$ (với $K$ là khoảng hoặc đoạn hoặc nửa khoảng của $\mathbb{R}$). Mệnh đề nào sau đây sai?

$\displaystyle\displaystyle\int\left[f(x)-g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int f(x)\mathrm{\,d}x-\displaystyle\displaystyle\int g(x)\mathrm{\,d}x$
$\displaystyle\displaystyle\int\left[f(x)\cdot g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int f(x)\mathrm{\,d}x\cdot\displaystyle\displaystyle\int g(x)\mathrm{\,d}x$
$\displaystyle\displaystyle\int kf(x)\mathrm{\,d}x=k\displaystyle\displaystyle\int f(x)\mathrm{\,d}x$, với $k$ là hằng số khác $0$
$\displaystyle\displaystyle\int\left[f(x)+g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int f(x)\mathrm{\,d}x+\displaystyle\displaystyle\int g(x)\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Gọi $S$ là diện tích hình phẳng giới hạn bởi đồ thị hai hàm số $y=f(x)$, $y=g(x)$ liên tục trên đoạn $[a;b]$ và các đường thẳng $x=a$, $x=b$. Diện tích $S$ được tính theo công thức nào dưới đây?

$S=\displaystyle\displaystyle\int\limits_a^b\left[g(x)-f(x)\right]\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_a^b|f(x)-g(x)|\mathrm{\,d}x$
$S=\left|\displaystyle\displaystyle\int\limits_a^b\left[f(x)-g(x)\right]\mathrm{\,d}x\right|$
$S=\displaystyle\displaystyle\int\limits_a^b\left[f(x)-g(x)\right]\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho $F(x)$ là một nguyên hàm của hàm số $f(x)$ trên đoạn $[1;3]$, $F(1)=3$, $F(3)=5$ và $\displaystyle\displaystyle\int\limits_1^3\left(x^4-8x\right)f(x)\mathrm{\,d}x=12$. Tính $I=\displaystyle\displaystyle\int\limits_1^3\left(x^3-2\right)F(x)\mathrm{\,d}x$.

$I=\dfrac{147}{2}$
$I=\dfrac{147}{3}$
$I=-\dfrac{147}{2}$
$I=147$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Biết $F(x)=-\dfrac{1}{x^2}$ là một nguyên hàm của hàm số $y=\dfrac{f(x)}{x}$. Tính $\displaystyle\displaystyle\int f'(x)\ln{x}\mathrm{\,d}x$.

$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=-\dfrac{2\ln{x}}{x^2}+\dfrac{1}{x^2}+C$
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=\dfrac{2\ln{x}}{x^2}+\dfrac{1}{x^2}+C$
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=\dfrac{2\ln{x}}{x^2}-\dfrac{1}{x^2}+C$
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=-\dfrac{2\ln{x}}{x^2}-\dfrac{1}{x^2}+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết $\displaystyle\displaystyle\int\limits_{-1}^1\left(\dfrac{9}{x-3}-\dfrac{7}{x-2}\right)\mathrm{\,d}x=a\ln{3}-b\ln{2}$. Tính giá trị $P=a^2+b^2$.

$P=32$
$P=130$
$P=2$
$P=16$
2 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hình phẳng $A$ giới hạn bởi đồ thị hai hàm số $y=\sqrt{x}$ và $y=\dfrac{1}{2}x$ (phần tô đậm trong hình vẽ).

Tính thể tích $V$ khối tròn xoay tạo thành khi quay hình $A$ xung quanh trục $Ox$.

$V=\dfrac{8}{3}\pi$
$V=\dfrac{8}{5}\pi$
$V=0,533$
$V=0,53\pi$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, phương trình nào dưới đây là phương trình đường thẳng $d$ đi qua điểm $M(1;2;-3)$ và vuông góc mặt phẳng $(P)\colon3x-y+5z+2=0$?

$\dfrac{x+1}{3}=\dfrac{y+2}{-1}=\dfrac{z-3}{5}$
$\dfrac{x-3}{-1}=\dfrac{y-1}{2}=\dfrac{z+5}{-3}$
$\dfrac{x-3}{1}=\dfrac{y-1}{-2}=\dfrac{z+5}{3}$
$\dfrac{x-1}{-3}=\dfrac{y-2}{1}=\dfrac{z+3}{-5}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, phương trình nào dưới đây là phương trình đường thẳng đi qua điểm $A(0;-3;2)$ và có vectơ chỉ phương $\overrightarrow{u}=(3;-2;1)$?

$\begin{cases}x=3t\\ y=-3-2t\\ z=2+t\end{cases}$
$\begin{cases}x=3\\ y=-2-3t\\ z=1+2t\end{cases}$
$\begin{cases}x=-3t\\ y=-3-2t\\ z=2+t\end{cases}$
$\begin{cases}x=3t\\ y=-3+2t\\ z=2+t\end{cases}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho đường thẳng $\Delta\colon\begin{cases}x=3-3t\\ y=1+2t\\ z=5t\end{cases}$. Điểm nào dưới đây thuộc đường thẳng $\Delta$?

$N(0;3;5)$
$M(-3;2;5)$
$P(3;1;5)$
$Q(6;-1;5)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho số phức $z=7-i$. Tìm số phức $w=\dfrac{1}{z}$.

$w=\dfrac{7}{50}-\dfrac{1}{50}i$
$w=-\dfrac{1}{50}+\dfrac{7}{50}i$
$w=\dfrac{1}{50}+\dfrac{7}{50}i$
$w=\dfrac{7}{50}+\dfrac{1}{50}i$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho ba điểm $A(1;2;3)$, $B(3;5;4)$ và $C(3;0;5)$. Phương trình nào dưới đây là phương trình của mặt phẳng $(ABC)$?

$x+2y+3z+13=0$
$4x+y-5z+13=0$
$4x-y+5z+13=0$
$4x-y-5z+13=0$
1 lời giải Sàng Khôn
Lời giải Tương tự