Ngân hàng bài tập

Giáo viên: Huỳnh Phú Sĩ

A

Cho tam giác \(ABC\) có $M$ là điểm thỏa mãn \(\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{AB}\). Xác định vị trí điểm \(M\).

\(M\) là trung điểm cạnh \(AC\)
\(M\) là trung điểm cạnh \(AB\)
\(M\) là trung điểm cạnh \(BC\)
\(M\) là điểm thứ tư của hình bình hành \(ABCM\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\) có \(M\) là điểm thỏa mãn \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\vec{0}\). Xác định vị trí điểm \(M\).

\(M\) là điểm thứ tư của hình bình hành \(ACBM\)
\(M\) là trung điểm của đoạn thẳng \(AB\)
\(M\equiv C\)
\(M\) là trọng tâm tam giác \(ABC\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(ABC\) có \(D,\,E,\,F\) lần lượt là trung điểm các cạnh \(BC,\,CA,\,AB\). Hệ thức nào sau đây đúng?

\(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{BC}\)
\(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{CA}+\overrightarrow{BC}+\overrightarrow{AC}\)
\(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}\)
\(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{AC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình bình hành \(ABCD\) tâm \(O\). Hãy tìm đẳng thức đúng.

\(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{AB}\)
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}-\overrightarrow{OD}=\vec{0}\)
\(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}-\overrightarrow{OD}\)
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\vec{0}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho bốn điểm phân biệt \(A,\,B,\,C,\,D\). Mệnh đề nào sau đây đúng?

\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)
\(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}=\overrightarrow{DA}\)
\(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{CD}+\overrightarrow{DA}\)
\(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{CD}+\overrightarrow{CB}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) có \(AB=AC\) và đường cao \(AH\). Đẳng thức nào sau đây đúng?

\(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AH}\)
\(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\vec{0}\)
\(\overrightarrow{HB}+\overrightarrow{HC}=\vec{0}\)
\(\overrightarrow{AB}=\overrightarrow{AC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho ba điểm phân biệt \(A,\,B,\,C\). Mệnh đề nào sau đây đúng?

\(AB+BC=AC\)
\(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}=\vec{0}\)
\(\overrightarrow{AB}=\overrightarrow{BC}\Leftrightarrow\left|\overrightarrow{CA}\right|=\left|\overrightarrow{BC}\right|\)
\(\overrightarrow{AB}-\overrightarrow{CA}=\overrightarrow{BC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(ABC\) với \(M\) là trung điểm cạnh \(BC\). Mệnh đề nào sau đây đúng?

\(\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{BA}=\vec{0}\)
\(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{AB}\)
\(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MC}\)
\(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AM}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\) đều cạnh \(a\). Mệnh đề nào sau đây đúng?

\(\overrightarrow{AB}=\overrightarrow{BC}=\overrightarrow{CA}\)
\(\overrightarrow{CA}=-\overrightarrow{AB}\)
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BC}\right|=\left|\overrightarrow{CA}\right|=a\)
\(\overrightarrow{CA}=-\overrightarrow{BC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình bình hành \(ABCD\), tâm \(O\). Tìm \(\overrightarrow{OB}-\overrightarrow{OC}\).

\(\overrightarrow{OB}-\overrightarrow{OC}=\overrightarrow{BC}\)
\(\overrightarrow{OB}-\overrightarrow{OC}=\overrightarrow{DA}\)
\(\overrightarrow{OB}-\overrightarrow{OC}=\overrightarrow{OD}-\overrightarrow{OA}\)
\(\overrightarrow{OB}-\overrightarrow{OC}=\overrightarrow{AB}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình bình hành \(ABCD\). Đẳng thức nào sau đây đúng?

\(\overrightarrow{AB}-\overrightarrow{BC}=\overrightarrow{DB}\)
\(\overrightarrow{AB}-\overrightarrow{BC}=\overrightarrow{BD}\)
\(\overrightarrow{AB}-\overrightarrow{BC}=\overrightarrow{CA}\)
\(\overrightarrow{AB}-\overrightarrow{BC}=\overrightarrow{AC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tính tổng \(\overrightarrow{MN}+\overrightarrow{PQ}+\overrightarrow{RN}+\overrightarrow{NP}+\overrightarrow{QR}\).

\(\overrightarrow{MR}\)
\(\overrightarrow{MN}\)
\(\overrightarrow{PR}\)
\(\overrightarrow{MP}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình bình hành \(ABCD\), có \(O\) là giao điểm của hai đường chéo. Khẳng định nào sau đây là đúng?

\(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{DA}\)
\(\overrightarrow{AO}+\overrightarrow{AC}=\overrightarrow{BO}\)
\(\overrightarrow{AO}-\overrightarrow{BO}=\overrightarrow{CD}\)
\(\overrightarrow{AO}+\overrightarrow{BO}=\overrightarrow{BD}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình bình hành \(ABCD\), có \(I\) là giao điểm của hai đường chéo. Khẳng định nào sau đây là sai?

\(\overrightarrow{IA}+\overrightarrow{IC}=\overrightarrow{0}\)
\(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\)
\(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\overrightarrow{AC}=\overrightarrow{BD}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hai vectơ \(\vec{a}\) và \(\vec{b}\) thỏa mãn \(\left|\vec{a}+\vec{b}\right|=0\). Chọn phát biểu không đúng?

\(\vec{a},\,\vec{b}\) ngược hướng
\(\left|\vec{a}\right|=\left|\vec{b}\right|\)
\(\vec{a},\,\vec{b}\) đối nhau
\(\vec{a},\,\vec{b}\) bằng nhau
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho lục giác đều \(ABCDEF\) có tâm \(O\). Có bao nhiêu vectơ đối của vectơ \(\overrightarrow{OC}\) mà có điểm đầu và điểm cuối là một trong các đỉnh và tâm của \(ABCDEF\)?

\(3\)
\(4\)
\(5\)
\(9\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai điểm \(A,\,B\) phân biệt. Điều kiện để \(M\) là trung điểm đoạn \(AB\) là

\(MA=MB\)
\(\overrightarrow{MA}+\overrightarrow{MB}=\vec{0}\)
\(\overrightarrow{MA}-\overrightarrow{MB}=\vec{0}\)
\(\overrightarrow{MA}=\overrightarrow{MB}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai điểm \(A,\,B\) phân biệt. Điều kiện để \(I\) là trung điểm đoạn \(AB\) là

\(IA=IB\)
\(\overrightarrow{IA}=\overrightarrow{IB}\)
\(\overrightarrow{IA}=-\overrightarrow{IB}\)
\(\overrightarrow{IA}=\overrightarrow{BI}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho \(\overrightarrow{AB}=-\overrightarrow{CD}\). Khẳng định nào sau đây đúng?

\(\overrightarrow{AB},\,\overrightarrow{CD}\) cùng hướng
\(\overrightarrow{AB},\,\overrightarrow{CD}\) cùng độ dài
\(ABCD\) là hình bình hành
\(\overrightarrow{AB}+\overrightarrow{DC}=\vec{0}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho \(\vec{a}\) và \(\vec{b}\) (khác \(\vec{0}\)) là các vectơ đối nhau. Khẳng định nào sau đây sai?

\(\vec{a},\,\vec{b}\) cùng phương
\(\vec{a},\,\vec{b}\) ngược hướng
\(\vec{a},\,\vec{b}\) cùng độ dài
\(\vec{a},\,\vec{b}\) cùng hướng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự