Ngân hàng bài tập

Giáo viên: Huỳnh Phú Sĩ

A

Cho tam giác \(OAB\) vuông cân tại \(O\), cạnh \(OA=a\). Tính \(\left|2\overrightarrow{OA}-\overrightarrow{OB}\right|\).

\(a\)
\(\left(1+\sqrt{2}\right)a\)
\(a\sqrt{5}\)
\(2a\sqrt{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Bạn Thùy đặt một tấm bìa cứng hình tứ giác (như hình vẽ) lên đầu một ngòi bút nhưng tấm bìa không bị rơi. Hỏi bạn Thùy đã đặt ngòi bút tại điểm nào của tấm bìa?

Trung điểm của \(MN\)
Trung điểm \(M\)
Trung điểm \(N\)
Giao điểm \(AC\) và \(BD\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Người ta dùng hai sợi dây chắc chắn buộc vào một vật. Một đầu dây buộc vào \(3\) chiếc xe con nối đuôi nhau, một đầu dây còn lại buộc vào \(2\) chiếc xe tải nối đuôi nhau. Hai đoàn xe chạy về hai hướng ngược nhau nhưng kết quả là vật vẫn đứng yên, không dịch về phía nào. Hỏi, nếu lực kéo của mỗi chiếc xe con là \(100\)N thì lực kéo của mỗi chiếc xe tải là bao nhiêu?

\(100\)N
\(150\)N
\(200\)N
\(300\)N
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình thoi \(ABCD\) có \(AC=2a\) và \(BD=a\). Tính \(\left|\overrightarrow{AC}+\overrightarrow{BD}\right|\).

\(\left|\overrightarrow{AC}+\overrightarrow{BD}\right|=3a\)
\(\left|\overrightarrow{AC}+\overrightarrow{BD}\right|=a\sqrt{3}\)
\(\left|\overrightarrow{AC}+\overrightarrow{BD}\right|=a\sqrt{5}\)
\(\left|\overrightarrow{AC}+\overrightarrow{BD}\right|=5a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) cân tại \(A\), đường cao \(AH\). Khẳng định nào sau đây sai?

\(\overrightarrow{AB}=\overrightarrow{AC}\)
\(\overrightarrow{HC}=-\overrightarrow{HB}\)
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{AC}\right|\)
\(\overrightarrow{BC}=2\overrightarrow{HC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Vectơ đối của vectơ \(5\vec{a}-3\vec{b}\) là

\(5\vec{a}+3\vec{b}\)
\(-5\vec{a}+3\vec{b}\)
\(-5\vec{a}-3\vec{b}\)
\(3\vec{a}-5\vec{b}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Vectơ đối của vectơ \(5\overrightarrow{u}\) là

\(\overrightarrow{u}-5\)
\(-\overrightarrow{u}\)
\(5-\overrightarrow{u}\)
\(-5\overrightarrow{u}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Hai lực \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) có điểm đặt là \(O\). Biết \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) lần lượt có cường độ bằng \(30\)N và \(40\)N. Góc hợp bởi \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) là \(60^\circ\). Tính cường độ lực tổng hợp \(\vec{F}=\overrightarrow{F_1}+\overrightarrow{F_2}\).

\(50\)N
\(10\sqrt{13}\)N
\(35\sqrt{3}\)N
\(10\sqrt{37}\)N
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Bạn Thùy đặt một tấm bìa cứng hình tam giác (như hình vẽ) lên đầu một ngòi bút nhưng tấm bìa không bị rơi. Hỏi bạn Thùy đã đặt ngòi bút tại điểm nào của tấm bìa?

Điểm \(A\)
Trung điểm \(M\)
Trung điểm \(N\)
Giao điểm \(AM\) và \(BN\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho ba lực \(\overrightarrow{F_1}=\overrightarrow{MA}\), \(\overrightarrow{F_2}=\overrightarrow{MB}\) và \(\overrightarrow{F_3}=\overrightarrow{MC}\) cùng tác động vào một vật tại điểm \(M\) và vật đứng yên. Biết rằng \(\overrightarrow{F_1},\,\overrightarrow{F_2}\) đều có cường độ lực là \(60\)N, và chúng vuông góc với nhau. Tính cường độ lực \(\overrightarrow{F_3}\).

\(84,58\)N
\(84,86\)N
\(84,85\)N
\(120\)N
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hai lực \(\overrightarrow{F_1}=\overrightarrow{MA}\) và \(\overrightarrow{F_2}=\overrightarrow{MB}\) cùng tác động vào một vật tại điểm \(M\). Cường độ hai lực \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) lần lượt là \(300\)N và \(400\)N, góc \(\widehat{AMB}=90^\circ\). Tính cường độ lực tổng hợp tác động vào vật.

\(0\)
\(700\)
\(100\)
\(500\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hai lực \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) có cùng điểm đặt tại \(O\). Biết \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) đều có cường độ là \(100\)N, góc hợp bởi \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) là \(120^\circ\). Cường độ lực tổng hợp của chúng là

\(200\)N
\(50\sqrt{3}\)N
\(100\sqrt{3}\)N
\(100\)N
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(ABC\) đều, cạnh \(a\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\).

\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{\sqrt{3}}{2}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) đều, cạnh \(a\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|\).

\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=2a\)
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=a\sqrt{3}\)
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=\dfrac{\sqrt{3}}{2}\)
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho tam giác \(ABC\) vuông cân tại \(C\) với \(AB=\sqrt{2}\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\).

\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\sqrt{5}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\sqrt{5}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\sqrt{3}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\sqrt{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(ABC\) vuông cân tại \(A\) với \(AB=a\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\).

\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{2}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{a\sqrt{2}}{2}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) vuông tại \(A\) và có \(AB=3\), \(AC=4\). Tính \(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|\).

\(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=2\)
\(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=2\sqrt{13}\)
\(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=5\)
\(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=\sqrt{13}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình vuông \(ABCD\) cạnh \(a\), tâm \(O\). Tính \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|\).

\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\)
\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\sqrt{2}\)
\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\dfrac{a}{2}\)
\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\dfrac{a\sqrt{2}}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình vuông \(ABCD\) cạnh \(a\). Tính \(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|\).

\(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|=0\)
\(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|=a\)
\(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|=a\sqrt{2}\)
\(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|=2a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(ABC\) có \(M\) là điểm thỏa mãn \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\vec{0}\). Mệnh đề nào sau đây sai?

\(MABC\) là hình bình hành
\(\overrightarrow{AM}+\overrightarrow{AB}=\overrightarrow{AC}\)
\(\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{BM}\)
\(\overrightarrow{MA}=\overrightarrow{BC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự