Ngân hàng bài tập

Giáo viên: Huỳnh Phú Sĩ

C

Điểm nào sau đây biểu diễn số phức \(\overline{z}\) trên mặt phẳng tọa độ, biết rằng \(z=4\mathrm{i}\)?

\(M(0;4)\)
\(N(-4;0)\)
\(P(-4;0)\)
\(Q(0;-4)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho số phức \(z=3+4\mathrm{i}\). Điểm nào sau đây biểu diễn số phức \(\overline{z}\) trên mặt phẳng tọa độ?

\(M(3;4)\)
\(N(-4;3)\)
\(P(3;-4)\)
\(Q(-3;-4)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Điểm nào sau đây biểu diễn số phức \(z=-2\mathrm{i}\) trên mặt phẳng tọa độ?

\(M(-2;0)\)
\(N(2;0)\)
\(P(0;-2)\)
\(Q(-2;-2)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Điểm nào sau đây biểu diễn số phức \(z=3\) trên mặt phẳng tọa độ?

\(M(0;3)\)
\(N(3;0)\)
\(P(3;1)\)
\(Q(3;3)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Điểm nào sau đây biểu diễn số phức \(z=3-4\mathrm{i}\) trên mặt phẳng tọa độ?

\(M(3;4)\)
\(N(-4;3)\)
\(P(3;-4)\)
\(Q(-3;-4)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho số phức \(z=3-4\mathrm{i}\). Số phức liên hợp của \(z\) là

\(z=3+4\mathrm{i}\)
\(\overline{z}=3+4\mathrm{i}\)
\(\overline{z}=3\)
\(\overline{z}=4\mathrm{i}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho số phức \(z=a+b\mathrm{i}\). Khẳng định nào sau đây sai?

\(z\) là số thuần ảo \(\Leftrightarrow a=0\)
\(z\) là số thực \(\Leftrightarrow b=0\)
\(z\) là số thuần ảo \(\Leftrightarrow\begin{cases}a=0\\ b\neq0\end{cases}\)
\(z\) là số thuần ảo \(\Leftrightarrow\overline{z}\) là số thuần ảo
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho số phức \(z=a+b\mathrm{i}\). Khẳng định nào sau đây sai?

\(\overline{z}=a-b\mathrm{i}\)
\(\overline{\overline{z}}=a+b\mathrm{i}\)
\(|z|=\sqrt{a^2+b^2}\)
\(\left|\overline{z}\right|=\sqrt{a^2-b^2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho số phức \(z=a+b\mathrm{i}\). Môđun của \(z\) là

\(|z|=\sqrt{a^2+b^2}\)
\(|z|=\sqrt{a^2-b^2}\)
\(|z|=a^2+b^2\)
\(|z|=2\sqrt{a^2+b^2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho số phức \(z=a+b\mathrm{i}\). Số phức liên hợp của \(z\) là

\(\overline{z}=a-b\mathrm{i}\)
\(z=a-b\mathrm{i}\)
\(\overline{z}=b\mathrm{i}\)
\(\overline{z}=-a-b\mathrm{i}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cặp vectơ nào sau đây cùng phương?

\(\vec{u}=(1;-2)\) và \(\vec{v}=(2;4)\)
\(\vec{u}=(1;-2)\) và \(\vec{v}=(-2;4)\)
\(\vec{u}=(1;0)\) và \(\vec{v}=(0;1)\)
\(\vec{u}=(1;-2)\) và \(\vec{v}=(-2;-4)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng \(Oxy\), cho bốn điểm \(A(1;1)\), \(B(2;-1)\), \(C(4;3)\), \(D(3;5)\). Khẳng định nào sau đây đúng?

Tứ giác \(ABCD\) là hình bình hành
\(G(9;7)\) là trọng tâm tam giác \(BCD\)
\(\overrightarrow{AB}=\overrightarrow{CD}\)
\(\overrightarrow{AC},\,\overrightarrow{AD}\) cùng phương
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong mặt phẳng \(Oxy\), cho ba điểm \(A(-1;5)\), \(B(5;5)\), \(C(-1;11)\). Khẳng định nào sau đây đúng?

\(A,\,B,\,C\) thẳng hàng
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng phương
\(\overrightarrow{AB},\,\overrightarrow{AC}\) không cùng phương
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng hướng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng \(Oxy\), cho bốn điểm \(A(3;-2)\), \(B(7;1)\), \(C(0;1)\), \(D(-8;-5)\). Khẳng định nào sau đây đúng?

\(\overrightarrow{AB},\,\overrightarrow{CD}\) đối nhau
\(\overrightarrow{AB},\,\overrightarrow{CD}\) ngược hướng
\(\overrightarrow{AB},\,\overrightarrow{CD}\) cùng hướng
\(A,\,B,\,C,\,D\) thẳng hàng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong mặt phẳng \(Oxy\), cho ba điểm \(A(-1;1)\), \(B(1;3)\), \(C(-2;0)\). Khẳng định nào sau đây sai?

\(\overrightarrow{AB}=2\overrightarrow{AC}\)
\(A,\,B,\,C\) thẳng hàng
\(\overrightarrow{BA}=\dfrac{2}{3}\overrightarrow{BC}\)
\(\overrightarrow{BA}+2\overrightarrow{CA}=\vec{0}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{u}=2\vec{i}-\vec{j}\) và \(\vec{v}=\vec{i}+m\vec{j}\). Tìm \(m\) để \(\vec{u},\,\vec{v}\) cùng phương.

\(m=-1\)
\(m=-\dfrac{1}{2}\)
\(m=\dfrac{1}{4}\)
\(m=2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(-5;0)\) và \(\vec{b}=(4;m)\). Tìm \(m\) để \(\vec{a},\,\vec{b}\) cùng phương.

\(m=-5\)
\(m=4\)
\(m=0\)
\(m=-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{u}=(3;-2)\) và \(\vec{v}=(1;6)\). Khẳng định nào sau đây là đúng?

\(\vec{u}+\vec{v}\) và \(\vec{a}=(-4;4)\) ngược hướng
\(\vec{u},\,\vec{v}\) cùng phương
\(\vec{u}-\vec{v}\) và \(\vec{b}=(6;-24)\) cùng hướng
\(2\vec{u}+\vec{v}\) và \(\vec{v}\) cùng phương
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Khẳng định nào sau đây là đúng?

\(\vec{a}=(-5;0),\,\vec{b}=(-4;0)\) cùng hướng
\(\vec{c}=(7;3)\) là vectơ đối của \(\vec{d}=(-7;3)\)
\(\vec{u}=(4;2),\,\vec{v}=(8;3)\) cùng phương
\(\vec{m}=(6;3),\,\vec{n}=(2;1)\) ngược hướng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong mặt phẳng tọa độ \(Oxy\), cho ba vectơ \(\vec{a}=(4;-1)\), \(\vec{b}=(1;-1)\) và \(\vec{c}=(2;1)\). Chọn mệnh đề đúng.

\(\vec{a}=\vec{b}-2\vec{c}\)
\(\vec{a}=2\vec{b}-\vec{c}\)
\(\vec{a}=2\vec{b}+\vec{c}\)
\(\vec{a}=\vec{b}+\vec{c}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự