Ngân hàng bài tập

Giáo viên: Huỳnh Phú Sĩ

S

Trong không gian \(Oxyz\), phương trình mặt cầu \((S)\) tiếp xúc với hai mặt phẳng song song \((P)\colon x-2y+2z+6=0\) và \((Q)\colon x-2y+2z-10=0\) có tâm \(I\) trên trục \(Oy\) là

\(x^2+y^2+z^2+2y-\dfrac{55}{9}=0\)
\(x^2+y^2+z^2+2y-60=0\)
\(x^2+y^2+z^2-2y+55=0\)
\(x^2+y^2+z^2-2y-\dfrac{55}{9}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2+6x-4y+2z-2=0\). Tọa độ tâm \(I\) và bán kính \(R\) của \((S)\) là

\(I(-3;2;-1)\) và \(R=4\)
\(I(-3;2;-1)\) và \(R=16\)
\(I(3;-2;1)\) và \(R=4\)
\(I(3;-2;1)\) và \(R=16\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trong không gian với hệ trục tọa độ \(Oxyz\), cho ba điểm \(A(0;-2;-1)\), \(B(-2;-4;3)\), \(C(1;3;-1)\). Tìm điểm \(M\in(Oxy)\) sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|\) đạt giá trị nhỏ nhất.

\(\left(-\dfrac{1}{5};\dfrac{3}{5};0\right)\)
\(\left(\dfrac{1}{5};\dfrac{3}{5};0\right)\)
\(\left(\dfrac{3}{5};\dfrac{4}{5};0\right)\)
\(\left(\dfrac{1}{5};-\dfrac{3}{5};0\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?

Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\)
\(\left[\vec{m},\vec{n}\right]=(1;-1;1)\)
\(\vec{m}\cdot\vec{n}=-1\)
\(\vec{m}\) và \(\vec{n}\) không cùng phương
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong tập số phức, phương trình \(z^2-2z+5=0\) có nghiệm là

\(z=-1\pm2i\)
\(z=2\pm2i\)
\(z=-2\pm2i\)
\(z=1\pm2i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm các căn bậc hai của \(-6\).

\(-\sqrt{6}i\)
\(\pm\sqrt{6}i\)
\(\pm6i\)
\(\sqrt{6}i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho số phức \(z\) thỏa mãn \(|z|=2\) và \(\left|z^2+1\right|=4\). Tính \(\left|z+\overline{z}\right|+\left|z-\overline{z}\right|\).

\(3+\sqrt{7}\)
\(3+2\sqrt{2}\)
\(7+\sqrt{3}\)
\(16\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho số phức \(z=x+yi\) (\(x,\,y\in\mathbb{R}\)) có môđun nhỏ nhất thỏa mãn điều kiện \(|z-4-2i|=|z-2|\). Tính \(P=x^2+y^2\).

\(10\)
\(16\)
\(8\)
\(32\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(x,\,y\) là các số thực. Số phức \(z=i\left(1+xi+y+2i\right)\) bằng \(0\) khi

\(x=-1;\,y=-2\)
\(x=0;\,y=0\)
\(x=-2;\,y=-1\)
\(x=2;\,y=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho số phức \(z=6+7i\). Điểm \(M\) biểu diễn cho số phức \(\overline{z}\) trên mặt phẳng \(Oxy\) là

\(M(-6;-7)\)
\(M(6;-7)\)
\(M(6;7i)\)
\(M(6;7)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trên mặt phẳng tọa độ \(Oxy\), cho hai điểm \(A(4;0)\), \(B(0;-3)\) và điểm \(C\) thỏa mãn điều kiện \(\overrightarrow{OC}=\overrightarrow{OA}+\overrightarrow{OB}\). Khi đó số phức được biểu diễn bởi điểm \(C\) là

\(z=-3-4i\)
\(z=4+3i\)
\(z=4-3i\)
\(z=-3+4i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hai số phức \(z=x-yi\) và \(w=2i+3x\), (\(x,\,y\in\mathbb{R}\)). Biết \(z=w\). Giá trị của \(x\) và \(y\) lần lượt là

\(2\) và \(-3\)
\(-2\) và \(0\)
\(0\) và \(2\)
\(0\) và \(-2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một ô tô đang chạy với vận tốc \(54\) km/h thì tăng tốc chuyển động nhanh dần đều với gia tốc \(a(t)=3t-8\) (m/s\(^2\)) trong đó \(t\) là khoảng thời gian tính bằng giây. Quãng đường mà ô tô đi được sau \(10\) s kể từ lúc tăng tốc là

\(540\) m
\(150\) m
\(250\) m
\(246\) m
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm bậc hai \(y=f(x)\) có đồ thị như hình bên. Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y=f(x)\) và \(Ox\) quanh \(Ox\).

\(\dfrac{4\pi}{3}\)
\(-\dfrac{12\pi}{15}\)
\(\dfrac{16\pi}{15}\)
\(\dfrac{16\pi}{5}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Gọi \(V\) là thể tích của khối tròn xoay do hình phẳng giới hạn bởi các đường sau quay quanh trục hoành: \(y=\sin x\), \(y=0\), \(x=0\), \(x=12\pi\). Mệnh đề nào dưới đây đúng?

\(V=\pi\displaystyle\int\limits_{0}^{12\pi}\left(\sin x\right)^2\mathrm{\,d}x\)
\(V=\pi\displaystyle\int\limits_{0}^{12\pi}\sin x\mathrm{\,d}x\)
\(V=\pi^2\displaystyle\int\limits_{0}^{12\pi}\left(\sin x\right)^2\mathrm{\,d}x\)
\(V=\pi^2\displaystyle\int\limits_{0}^{12\pi}\sin x\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \((H)\) là hình phẳng giới hạn bởi đồ thị của các hàm số \(y=\sqrt{x}\), \(y=0\), \(y=2-x\). Diện tích của \((H)\) là

\(\dfrac{4\sqrt{2}-1}{3}\)
\(\dfrac{8\sqrt{2}+3}{6}\)
\(\dfrac{7}{6}\)
\(\dfrac{5}{6}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tính diện tích hình phẳng giới hạn bởi \(\left(\mathscr{C}\right)\colon y=x^4-2x^2+1\) và trục hoành.

\(\dfrac{8}{15}\)
\(-\dfrac{15}{16}\)
\(\dfrac{15}{8}\)
\(\dfrac{16}{15}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính diện tích hình phẳng giới hạn bởi các đường \(y=-x^2+4x-3\), \(x=0\), \(x=3\), \(Ox\).

\(-\dfrac{8}{3}\)
\(-\dfrac{4}{3}\)
\(\dfrac{4}{3}\)
\(\dfrac{8}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Diện tích hình phẳng được giới hạn bởi đường cong \(y=\dfrac{1}{2}x^2\) và đường thẳng \(y=x\) được tính theo công thức nào sau đây?

\(S=\displaystyle\int\limits_{0}^{2}\left|x^2-2x\right|\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_{0}^{2}\left|\dfrac{1}{2}x^2-x\right|\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_{0}^{2}\left(\dfrac{1}{2}x^2-x\right)^2\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_{0}^{2}\left(\dfrac{1}{2}x^2-x\right)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\), biết \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{4}}f\left(\tan x\right)\mathrm{\,d}x=4\) và \(\displaystyle\int\limits_{0}^{1}\dfrac{x^2\cdot f(x)}{x^2+1}\mathrm{\,d}x=2\). Tính \(I=\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x\).

\(6\)
\(1\)
\(0\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự