Ngân hàng bài tập

Giáo viên: Huỳnh Phú Sĩ

B

Trong không gian với hệ tọa độ \(Oxyz\) cho hai điểm \(M(3;0;0)\), \(N(0;0;4)\). Tính độ dài đoạn thẳng \(MN\).

\(MN=7\)
\(MN=1\)
\(MN=5\)
\(MN=10\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian với hệ tọa độ \(Oxyz\) cho \(A(-1;2;4)\), \(B(-1;1;4)\), \(C(0;0;4)\). Tìm số đo của \(\widehat{ABC}\).

\(135^\circ\)
\(120^\circ\)
\(45^\circ\)
\(60^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hai số phức \(z_1=3-3i\), \(z_2=-1+2i\). Phần ảo của số phức \(w=z_1+2z_2\) là

\(-1\)
\(1\)
\(-7\)
\(7\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho số phức \(z\) thỏa mãn \(|z-1|=|z-i|\). Tìm môđun nhỏ nhất của số phức \(w=2z+2-i\).

\(3\sqrt{2}\)
\(\dfrac{3}{2\sqrt{2}}\)
\(\dfrac{3\sqrt{2}}{2}\)
\(\dfrac{3}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho số phức \(z\) thỏa mãn \(|z+i|=1\). Biết rằng tập hợp điểm biểu diễn số phức \(w=z-2i\) là một đường tròn. Tâm của đường tròn đó là

\(I(0;-1)\)
\(I(0;-3)\)
\(I(0;3)\)
\(I(0;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Giá trị của tham số thực \(m\) bằng bao nhiêu để bình phương số phức \(z=\dfrac{(m+9i)(1+i)}{2}\) là số thực?

Không có giá trị \(m\) thỏa
\(m=-9\)
\(m=9\)
\(m=\pm9\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Số phức liên hợp của số phức \(z=(1+i)^{15}\) là

\(\overline{z}=128+128i\)
\(\overline{z}=128-128i\)
\(\overline{z}=-1\)
\(\overline{z}=-128-128i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho số phức \(z\) thỏa mãn \(z+2\overline{z}=6-3i\) có phần ảo bằng

\(-3\)
\(3\)
\(3i\)
\(2i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức \(z=a+bi\). Số phức \(z^2\) có phần thực và phần ảo là

\(a^2+b^2\) và \(2a^2b^2\)
\(a+b\) và \(a^2b^2\)
\(a^2-b^2\) và \(2ab\)
\(a-b\) và \(ab\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức \(z\) thỏa mãn \(z=i(3+4i)\). Môđun của \(z\) là

\(|z|=7\)
\(|z|=\sqrt{5}\)
\(|z|=5\)
\(|z|=25\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính môđun của số phức \(z=4-3i\).

\(|z|=5\)
\(|z|=\sqrt{7}\)
\(|z|=7\)
\(|z|=25\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Điểm \(A\) trong hình vẽ trên biểu diễn cho số phức \(z\). Mệnh đề nào sau đây đúng.

Phần thực là \(-3\), phần ảo là \(2\)
Phần thực là \(-3\), phần ảo là \(2i\)
Phần thực là \(3\), phần ảo là \(-2i\)
Phần thực là \(3\), phần ảo là \(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tính thể tích khối tròn xoay được tạo bởi hình phẳng giới hạn bởi ba đường \(y=\sqrt{x}\), \(y=2-x\) và \(y=0\) quanh trục \(Ox\).

\(\dfrac{3\pi}{2}\)
\(\dfrac{5\pi}{6}\)
\(\pi\)
\(\dfrac{2\pi}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình phẳng giới hạn bởi đồ thị hàm số \(y=\mathrm{e}^x\), trục \(Ox\), hai đường thẳng \(x=0\), \(x=1\). Thể tích khối tròn xoay khi quay hình đó xung quanh trục hoành được cho bởi công thức

\(\left(\pi\displaystyle\int\limits_{0}^{1}\mathrm{e}^x\mathrm{\,d}x\right)^2\)
\(\pi\displaystyle\int\limits_{0}^{1}\mathrm{e}^{2x}\mathrm{\,d}x\)
\(\displaystyle\int\limits_{0}^{1}\mathrm{e}^{2x}\mathrm{\,d}x\)
\(\pi\left(\displaystyle\int\limits_{0}^{1}\mathrm{e}^x\mathrm{\,d}x\right)^2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Thể tích của khối tròn xoay tạo thành khi quay hình phẳng \(D\) giới hạn bởi các đường \(y=\sqrt{x-1}\), trục hoành, \(x=2\) và \(x=5\) quanh trục \(Ox\) bằng

\(\displaystyle\int\limits_{2}^{5}(x-1)\mathrm{\,d}x\)
\(\displaystyle\int\limits_{2}^{5}\sqrt{x-1}\mathrm{\,d}x\)
\(\pi\displaystyle\int\limits_{2}^{5}(x-1)\mathrm{\,d}x\)
\(\pi^2\displaystyle\int\limits_{2}^{5}(x-1)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Diện tích hình phẳng giới hạn bởi đồ thị hai hàm số \(y=x^2\) và \(y=x\) là

\(1\)
\(\dfrac{3}{2}\)
\(\dfrac{1}{2}\)
\(\dfrac{1}{6}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho đồ thị hàm số \(y=h(x)\). Diện tích hình phẳng (phần gạch chéo trong hình vẽ) bằng

\(\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{0}^{1}h(x)\mathrm{\,d}x\)
\(\displaystyle\int\limits_{-1}^{1}h(x)\mathrm{\,d}x\)
\(\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{1}^{0}h(x)\mathrm{\,d}x\)
\(-\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{0}^{1}h(x)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Diện tích hình phẳng \(S\) đối với hình vẽ trên là

\(S=-\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_{b}^{a}f(x)\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_{a}^{b}-f(x)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết rằng \(\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{\,d}x=a\ln5+b\ln2\), (\(a,\,b\in\mathbb{Z}\)). Mệnh đề nào sau đây đúng?

\(a+b=0\)
\(a-b=0\)
\(a+2b=0\)
\(2a-b=0\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\sin x+1}\mathrm{\,d}x=a\ln2+b\ln3\) (\(a,\,b\in\mathbb{Z}\)). Khi đó, giá trị của \(a\cdot b\) là

\(2\)
\(-2\)
\(-4\)
\(3\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự