Ngân hàng bài tập

Giáo viên: Huỳnh Phú Sĩ

C

Cho hai số phức $z_1=3-i$ và $z_2=-2+5i$. Khi đó mô-đun của số phức $z=z_1+z_2$ bằng

$\sqrt{17}$
$2\sqrt{17}$
$\sqrt{39}$
$\sqrt{10}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Với $a$ là số thực dương bất kỳ, $\ln(2023a)-\ln(2022a)$ bằng

$\dfrac{2023}{2022}$
$\ln\dfrac{2023}{2022}$
$\dfrac{\ln2023}{\ln2022}$
$\ln a$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Có $30$ chiếc thẻ được đánh số thứ tự từ $1$ đến $30$. Chọn ngẫu nhiên một chiếc thẻ. Tính xác suất để chiếc thẻ được chọn mang số chia hết cho $3$.

$\dfrac{2}{3}$
$\dfrac{3}{10}$
$\dfrac{1}{3}$
$\dfrac{1}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị nhỏ nhất của hàm số $y=x^3-3x^2$ trên đoạn $[1;5]$ bằng

$50$
$-4$
$-45$
$-2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Diện tích hình phẳng giới hạn bởi đồ thị của hàm số $y=x^5$, trục hoành và hai đường thẳng $x=-1$, $x=1$ bằng

$\dfrac{3}{2}$
$\dfrac{1}{3}$
$7$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tiệm cận đứng của đồ thị hàm số $y=\dfrac{2x-1}{x+1}$ là đường thẳng có phương trình

$y=-1$
$x=-1$
$y=2$
$x=2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị hàm số $y=\dfrac{x-4}{2x+2}$ cắt trục tung tại điểm có tung độ bằng

$\dfrac{1}{2}$
$-1$
$-2$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Hình lăng trụ $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$. Hình chiếu vuông góc của $A'$ lên mặt phẳng $(ABC)$ là điểm $I$ thuộc cạnh $BC$. Khoảng cách từ $A$ tới mặt phẳng $(A'BC)$ bằng

$\dfrac{2}{5}a$
$\dfrac{\sqrt{3}}{2}a$
$\dfrac{2a\sqrt{5}}{5}$
$\dfrac{a\sqrt{5}}{5}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Thể tích của khối nón có chiều cao $h$ và bán kính $r$ là

$\dfrac{4}{3}\pi r^2h$
$2\pi r^2h$
$\pi r^2h$
$\dfrac{1}{3}\pi r^2h$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho $\displaystyle\displaystyle\int\sin x\mathrm{\,d}x=F(x)+C$. Khẳng định nào dưới đây đúng?

$F'(x)=-\sin x$
$F'(x)=\sin x$
$F'(x)=-\cos x$
$F'(x)=\cos x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một hình trụ có bán kính đáy bằng $a$, chu vi thiết diện qua trục bằng $10a$. Chiều cao của khối trụ đã cho bằng

$3a$
$a$
$4a$
$9a$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ?

$y=-x^4+2x^2-3$
$y=-x^3+3x$
$y=x^4-2x^2-3$
$y=x^3-3x-3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập xác định của hàm số $y=\ln(2-x)$ là

$\mathscr{D}=\mathbb{R}$
$\mathscr{D}=(-\infty;2)$
$\mathscr{D}=(2;+\infty)$
$\mathscr{D}=\mathbb{R}\setminus\{2\}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập nghiệm bất phương trình $2^{x^2-3x}< 16$ là

$(4;+\infty)$
$(-\infty;-1)\cup(4;+\infty)$
$(-1;4)$
$(-\infty;-1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có $SA$ vuông góc với mặt phẳng $(ABC)$, $SA=2a$, tam giác $ABC$ vuông tại $B$, $AB=a\sqrt{3}$ và $BC=a$. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ bằng

$90^{\circ}$
$30^{\circ}$
$45^{\circ}$
$60^{\circ}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho khối chóp có diện tích đáy $B=2a^2$ và chiều cao $h=9a$. Thể tích của khối chóp đã cho bằng

$9a^3$
$6a^3$
$3a^3$
$18a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon2x+y-z+3=0$. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng $(P)$?

$\overrightarrow{n_1}=(2;1;-1)$
$\overrightarrow{n_3}=(1;-1;3)$
$\overrightarrow{n_4}=(2;-1;3)$
$\overrightarrow{n_2}=(2;1;3)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, gọi $\alpha$ là góc giữa hai mặt phẳng $(P)\colon x-\sqrt{3}y+2z+1=0$ và mặt phẳng $(Oxy)$. Khẳng định nào sau đây đúng?

$\alpha=45^{\circ}$
$\alpha=30^{\circ}$
$\alpha=60^{\circ}$
$\alpha=90^{\circ}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho điểm $M(2;-1;3)$ và mặt phẳng $(P)\colon3x-2y+z+1=0$. Phương trình mặt phẳng đi qua $M$ và song song với $(P)$ là

$3x-2y+z-11=0$
$2x-y+3z-14=0$
$3x-2y+z+11=0$
$2x-y+3z+14=0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nghiệm của phương trình $2^{2x-1}=8$ là

$x=\dfrac{5}{2}$
$x=3$
$x=2$
$x=\dfrac{3}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự