Ngân hàng bài tập

Toán học

B

Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=1$. Tính $F\left(\dfrac{\pi}{6}\right)$.

$F\left(\dfrac{\pi}{6}\right)=0$
$F\left(\dfrac{\pi}{6}\right)=\dfrac{3}{4}$
$F\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}$
$F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, tọa độ giao điểm của trục hoành với mặt phẳng $(P)\colon x-2y+z-2=0$ là

$(-2;0;0)$
$(2;0;0)$
$(0;-1;0)$
$(0;0;2)$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Gọi $z_1,\,z_2$ là các nghiệm phức của phương trình $z^2+2z+5=0$. Tính $M=\left|z_1\right|^2+\left|z_2\right|^2$.

$M=4\sqrt{5}$
$M=2\sqrt{34}$
$M=12$
$M=10$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Họ nguyên hàm của hàm số $f(x)=3x\left(x-\mathrm{e}^x\right)$ là

$x^3+(3x-1)\mathrm{e}^x+C$
$x^3-3(x-1)\mathrm{e}^x+C$
$x^3+3(x-1)\mathrm{e}^x+C$
$x^3-(3x+1)\mathrm{e}^x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Kết quả của $I=\displaystyle\displaystyle\int x\mathrm{e}^x\mathrm{\,d}x$ là

$I=x\mathrm{e}^x-\mathrm{e}^x+C$
$I=\dfrac{x^2}{2}\mathrm{e}^x+C$
$I=\dfrac{x^2}{2}\mathrm{e}^x+\mathrm{e}^x+C$
$I=x\mathrm{e}^x+\mathrm{e}^x+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho số phức $z=6+7i$. Số phức liên hợp của $z$ có điểm biểu diễn là điểm nào sau đây?

$N(-6;7)$
$M(6;-7)$
$Q(6;7)$
$P(-6;-7)$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hàm số $f(x)=-x^2+3$ và hàm số $g(x)=x^2-2x-1$ có đồ thị như hình vẽ.

Tích phân $I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left|f(x)-g(x)\right|\mathrm{\,d}x$ bằng với tích phân nào dưới đây?

$I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left[f(x)-g(x)\right]\mathrm{\,d}x$
$I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left[g(x)-f(x)\right]\mathrm{\,d}x$
$I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left[\left|f(x)\right|-\left|g(x)\right|\right]\mathrm{\,d}x$
$I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left[f(x)+g(x)\right]\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Gọi $S$ là diện tích của hình phẳng giới hạn bởi các đường $y=\dfrac{\ln x}{x^2}$, $y=0$, $x=1$, $x=\mathrm{e}$. Mệnh đề nào dưới đây là đúng?

$S=\pi\displaystyle\displaystyle\int\limits_{1}^{\mathrm{e}}\dfrac{\ln x}{x^2}\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{1}^{\mathrm{e}}\dfrac{\ln x}{x^2}\mathrm{\,d}x$
$S=\displaystyle\displaystyle\int\limits_{1}^{\mathrm{e}}\left(\dfrac{\ln x}{x^2}\right)^2\mathrm{\,d}x$
$S=\pi\displaystyle\displaystyle\int\limits_{1}^{\mathrm{e}}\left(\dfrac{\ln x}{x^2}\right)^2\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, cho điểm $A(2;-1;1)$. Phương trình mặt phẳng $\left(\alpha\right)$ qua các hình chiếu của điểm $A$ trên các trục tọa độ là

$\dfrac{x}{2}+\dfrac{y}{-1}+\dfrac{z}{1}=-1$
$\dfrac{x}{2}+\dfrac{y}{-1}+\dfrac{z}{1}=0$
$\dfrac{x}{2}+\dfrac{y}{-1}+\dfrac{z}{1}=1$
$\dfrac{x}{2}+\dfrac{y}{1}+\dfrac{z}{1}=1$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho $\displaystyle\displaystyle\int\limits_{0}^{3}f(x)\mathrm{\,d}x=2$ và $\displaystyle\displaystyle\int\limits_{0}^{3}g(x)\mathrm{\,d}x=3$. Tính giá trị của tích phân $L=\displaystyle\displaystyle\int\limits_{0}^{3}\left[2f(x)-g(x)\right]\mathrm{\,d}x$.

$-4$
$4$
$-1$
$1$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, mặt cầu $(S)\colon x^2+y^2+z^2-4x+2y-6z+4=0$ có bán kính bằng

$\sqrt{53}$
$4\sqrt{2}$
$3\sqrt{7}$
$\sqrt{10}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hình phẳng $\left(\mathscr{D}\right)$ giới hạn bởi đồ thị hàm số $y=\sqrt{x}$, hai đường thẳng $x=1$, $x=2$ và trục hoành. Tính thể tích khối tròn xoay tạo thành khi quay $\left(\mathscr{D}\right)$ quanh trục hoành.

$3\pi$
$\dfrac{3}{2}$
$\dfrac{2\pi}{3}$
$\dfrac{3\pi}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho điểm $A(1;2;3)$. Hình chiếu vuông góc của điểm $A$ lên mặt phẳng $(Oxy)$ là điểm

$P(1;0;0)$
$Q(0;2;0)$
$M(0;0;3)$
$N(1;2;0)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{2}\mathrm{\,d}x$ bằng

$2$
$0$
$1$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Tìm họ nguyên hàm của hàm số $f(x)=\dfrac{1}{3x+1}$.

$\ln|3x+1|+C$
$\dfrac{1}{3}\ln|3x+1|+C$
$\ln(3x+1)+C$
$\dfrac{1}{3}\ln(3x+1)+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Tìm họ nguyên hàm của hàm số $f(x)=\mathrm{e}^{2021x}$.

$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^{2021x}+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^{2021x}\cdot\ln2021+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=2021\cdot\mathrm{e}^{2021x}+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{1}{2021}\cdot\mathrm{e}^{2021x}+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, mặt cầu $(S)\colon(x-1)^2+(y-2)^2+(z+3)^2=4$ có bán kính bằng

$2$
$\sqrt{2}$
$4$
$16$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Số phức liên hợp của số phức $z$ với $z=(1+i)(3-2i)+\dfrac{1}{3+i}$ là

$\dfrac{53}{10}-\dfrac{9}{10}i$
$\dfrac{13}{10}+\dfrac{9}{10}i$
$\dfrac{13}{10}-\dfrac{9}{10}i$
$\dfrac{53}{10}+\dfrac{9}{10}i$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon2x-z+1=0$. Một vectơ pháp tuyến của mặt phẳng $(P)$ là

$\overrightarrow{n}=(2;-1;0)$
$\overrightarrow{n}=(2;-1;1)$
$\overrightarrow{n}=(2;0;-1)$
$\overrightarrow{n}=(2;0;1)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, vectơ $\overrightarrow{u}=(1;2;-5)$ là vectơ chỉ phương của đường thẳng nào sau đây?

$\begin{cases}x=t\\ y=-2t\\ z=3-5t\end{cases}$
$\begin{cases}x=1+2t\\ y=2+4t\\ z=-5+6t\end{cases}$
$\begin{cases}x=5+t\\ y=-1+2t\\ z=5t\end{cases}$
$\begin{cases}x=6-t\\ y=-1-2t\\ z=5t\end{cases}$
1 lời giải Sàng Khôn
Lời giải Tương tự