Ngân hàng bài tập

Toán học

A

Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon3x+y-3z+6=0\) và mặt cầu \((S)\colon(x-4)^2+(y+5)^2+(z+2)^2=25\). Biết \((P)\) cắt \((S)\) theo giao tuyến là một đường tròn bán kính \(r\). Chọn phát biểu đúng.

\(r=6\)
\(r=5\)
\(r=\sqrt{6}\)
\(r=\sqrt{5}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho bốn điểm \(A(3;-2;-2)\), \(B(3;2;0)\), \(C(0;2;1)\) và \(D(-1;1;2)\). Mặt cầu tâm \(A\) và tiếp xúc với mặt phẳng \((BCD)\) có bán kính bằng

\(9\)
\(5\)
\(\sqrt{14}\)
\(\sqrt{13}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), mặt cầu \((S)\) có tâm \(I(2;1;-1)\) và tiếp xúc với mặt phẳng \((\alpha)\colon2x-2y-z+3=0\). Bán kính của \((S)\) bằng

\(2\)
\(\dfrac{2}{3}\)
\(\dfrac{4}{3}\)
\(\dfrac{2}{9}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon3x-2y+6z+14=0\) và mặt cầu \((S)\colon x^2+y^2+z^2-2(x+y+z)-22=0\). Khoảng cách từ tâm \(I\) của \((S)\) đến mặt phẳng \((P)\) bằng

\(1\)
\(2\)
\(3\)
\(4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho các điểm \(A(1;1;3)\), \(B(-1;3;2)\), \(C(-1;2;3)\). Tính khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \((ABC)\).

\(\sqrt{3}\)
\(3\)
\(\dfrac{\sqrt{3}}{2}\)
\(\dfrac{3}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), gọi \(H\) là hình chiếu vuông góc của điểm \(A(2;-1;-1)\) trên mặt phẳng \((\alpha)\colon16x-12y-15z-4=0\). Tính độ dài đoạn thẳng \(AH\).

\(AH=55\)
\(AH=\dfrac{11}{5}\)
\(AH=\dfrac{11}{25}\)
\(AH=\dfrac{22}{5}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) có \(A(0;2;0)\), \(B(2;0;0)\), \(C\left(0;0;\sqrt{2}\right)\) và \(D(0;-2;0)\). Tính số đo góc của hai mặt phẳng \((ABC)\) và \((ACD)\).

\(30^\circ\)
\(45^\circ\)
\(60^\circ\)
\(90^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon2x-y-2z-9=0\) và \((Q)\colon x-y-6=0\). Số đo góc tạo bởi hai mặt phẳng bằng

\(30^\circ\)
\(45^\circ\)
\(60^\circ\)
\(90^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon2x-y-z-3=0\) và \((Q)\colon x-z-2=0\). Tính số đo góc giữa hai mặt phẳng \((P)\) và \((Q)\).

\(\left((P),(Q)\right)=30^\circ\)
\(\left((P),(Q)\right)=45^\circ\)
\(\left((P),(Q)\right)=60^\circ\)
\(\left((P),(Q)\right)=90^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \((H)\) là hình phẳng giới hạn bởi parabol \(y=2x^2-1\) và nửa đường tròn có phương trình \(y=\sqrt{2-x^2}\) với \(-\sqrt{2}\leq x\leq\sqrt{2}\) (phần gạch chéo trong hình vẽ).

Diện tích của hình \((H)\) bằng

\(\dfrac{3\pi-2}{6}\)
\(\dfrac{3\pi+10}{3}\)
\(\dfrac{3\pi+2}{6}\)
\(\dfrac{3\pi+10}{6}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tính diện tích hình phẳng giới hạn bởi parabol \(y=-x^2+2x\) và đường thẳng \(y=-3x\).

\(S=\dfrac{125}{2}\)
\(S=\dfrac{125}{3}\)
\(S=\dfrac{125}{6}\)
\(S=\dfrac{125}{8}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tính diện tích hình phẳng giới hạn bởi parabol \(y=x^2\) và đường thẳng \(y=2x\).

\(S=\dfrac{5}{3}\)
\(S=\dfrac{14}{3}\)
\(S=\dfrac{20}{3}\)
\(S=\dfrac{4}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Diện tích hình phẳng giới hạn bởi hai đường parabol \(y=x^2-2x\) và \(y=2x^2-x-2\) là

\(\dfrac{9}{2}\)
\(9\)
\(5\)
\(4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tính diện tích \(S\) của phần hình phẳng giới hạn bởi hai đồ thị hàm số \(y=x^3-3x^2\) và \(y=x^2+x-4\).

\(S=\dfrac{253}{12}\)
\(S=\dfrac{125}{12}\)
\(S=\dfrac{16}{3}\)
\(S=\dfrac{63}{4}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \((H)\) là hình phẳng giới hạn bởi các đường \(y=\sqrt{2x}\), \(y=2x-2\) và trục hoành. Tính diện tích của \((H)\).

\(S=\dfrac{5}{3}\)
\(S=\dfrac{16}{3}\)
\(S=\dfrac{10}{3}\)
\(S=\dfrac{8}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tính diện tích \(S\) của hình phẳng giới hạn bởi elip \((E)\) có phương trình \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\), với \(a,\,b>0\).

\(S=\pi\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)
\(S=\pi(a+b)^2\)
\(S=\pi ab\)
\(S=\dfrac{\pi a^2b^2}{a+b}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Diện tích \(S\) của hình phẳng giới hạn bởi đường cong \(y=-x^3+3x^2-2\), trục hoành và hai đường thẳng \(x=0\), \(x=2\) là

\(S=\dfrac{5}{2}\)
\(S=\dfrac{3}{2}\)
\(S=\dfrac{7}{2}\)
\(S=4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Gọi \(S\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f(x)\), trục hoành, \(x=a\), \(x=b\).

Khi đó \(S\) được tính theo công thức nào dưới đây?

\(S=\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_{a}^{c}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{c}^{b}f(x)\mathrm{\,d}x\)
\(S=-\displaystyle\int\limits_{a}^{c}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{c}^{b}f(x)\mathrm{\,d}x\)
\(S=\left|\displaystyle\int\limits_{a}^{c}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{c}^{b}f(x)\mathrm{\,d}x\right|\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Gọi \(S\) là diện tích hình phẳng giới hạn bởi các đường \(y=f(x)\), trục hoành và hai đường thẳng \(x=-1\), \(x=2\) (như hình vẽ).

Đặt \(a=\displaystyle\int\limits_{-1}^{0}f(x)\mathrm{\,d}x\), \(b=\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x\), mệnh đề nào dưới đây đúng?

\(S=b-a\)
\(S=b+a\)
\(S=a-b\)
\(S=-a-b\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai hàm số \(y=f_1(x)\) và \(y=f_2(x)\) liên tục trên đoạn \([a;b]\). Diện tích hình phẳng \(S\) giới hạn bởi các đường cong \(y=f_1(x)\), \(y=f_2(x)\) và các đường thẳng \(x=a\), \(x=b\) (\(a<b\)) được xác định bởi công thức nào sau đây?

\(S=\displaystyle\int\limits_{a}^{b}\left|f_1(x)+f_2(x)\right|\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_{a}^{b}\left[f_1(x)-f_2(x)\right]\mathrm{\,d}x\)
\(S=\left|\displaystyle\int\limits_{a}^{b}\left[f_1(x)-f_2(x)\right]\mathrm{\,d}x\right|\)
\(S=\displaystyle\int\limits_{a}^{b}\left|f_1(x)-f_2(x)\right|\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự