Tính giới hạn \(\lim\limits_{x\to-\infty}\dfrac{2x^3-7x^2+11}{3x^6+2x^5-5}\).
| \(-2\) | |
| \(+\infty\) | |
| \(0\) | |
| \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\dfrac{2x^3+5x^2-3}{x^2+6x+3}\).
| \(-2\) | |
| \(+\infty\) | |
| \(-\infty\) | |
| \(2\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\dfrac{2x^2+5x-3}{x^2+6x+3}\).
| \(-2\) | |
| \(+\infty\) | |
| \(3\) | |
| \(2\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}x\left(\sqrt{4x^2+7x}+2x\right)\).
| \(4\) | |
| \(-\infty\) | |
| \(6\) | |
| \(+\infty\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt[3]{3x^3-1}+\sqrt{x^2+2}\right)\).
| \(\sqrt[3]{3}+1\) | |
| \(+\infty\) | |
| \(\sqrt[3]{3}-1\) | |
| \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt{x^2+1}+x\right)\).
| \(0\) | |
| \(+\infty\) | |
| \(\sqrt{2}-1\) | |
| \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\left(|x|^3+2x^2+3|x|\right)\).
| \(0\) | |
| \(+\infty\) | |
| \(1\) | |
| \(-\infty\) |
Giới hạn \(\lim\limits_{x\to-\infty}\left(x-x^3+1\right)\) bằng
| \(1\) | |
| \(-\infty\) | |
| \(0\) | |
| \(+\infty\) |
Tính giới hạn \(\lim\limits_{x\to0^+}\dfrac{\sqrt{x^2+x}-\sqrt{x}}{x^2}\).
| \(0\) | |
| \(-\infty\) | |
| \(1\) | |
| \(+\infty\) |
Tính giới hạn \(\lim\limits_{x\to3^-}\dfrac{3-x}{\sqrt{27-x^3}}\).
| \(\dfrac{1}{3}\) | |
| \(0\) | |
| \(\dfrac{5}{3}\) | |
| \(\dfrac{3}{5}\) |
Cho hàm số \(f(x)=\begin{cases}
x^2-2x+3 &\text{với }x>3\\
1 &\text{với }x=3\\
3-2x^2 &\text{với }x<3.
\end{cases}\)
Khẳng định nào dưới đây sai?
| \(\lim\limits_{x\to3^+}f(x)=6\) | |
| \(\lim\limits_{x\to3^-}f(x)=6\) | |
| \(\lim\limits_{x\to3^-}f(x)=-15\) | |
| Không tồn tại |
Cho hàm số \(f(x)=\begin{cases}
\sqrt{x-2}+3 &\text{với }x\geq2\\
ax-1 &\text{với }x<2.
\end{cases}\)
Tìm \(a\) để tồn tại \(\lim\limits_{x\to2}f(x)\).
| \(a=1\) | |
| \(a=2\) | |
| \(a=4\) | |
| \(a=3\) |
Cho hàm số \(f(x)=\begin{cases}
x^2-3 &\text{với }x\geq2\\
x-1 &\text{với }x<2.
\end{cases}\)
Tính \(\lim\limits_{x\to2}f(x)\).
| \(-1\) | |
| \(0\) | |
| \(1\) | |
| Không tồn tại |
Cho hàm số \(f(x)=\begin{cases}
\dfrac{x^2+1}{1-x} &\text{với }x<1\\
\sqrt{2x-2} &\text{với }x\geq1.
\end{cases}\)
Tính giới hạn \(\lim\limits_{x\to1^-}f(x)\).
| \(+\infty\) | |
| \(-1\) | |
| \(0\) | |
| \(1\) |
Cho hàm số \(f(x)=\begin{cases}
\dfrac{2x}{\sqrt{1-x}} &\text{với }x<1\\
\sqrt{3x^2+1} &\text{với }x\geq1.
\end{cases}\)
Tính giới hạn \(\lim\limits_{x\to1^+}f(x)\).
| \(+\infty\) | |
| \(2\) | |
| \(4\) | |
| \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to-3^+}\dfrac{x^2+13x+30}{\sqrt{(x+3)(x^2+5)}}\).
| \(-2\) | |
| \(2\) | |
| \(0\) | |
| \(\dfrac{2}{\sqrt{15}}\) |
Tính giới hạn \(\lim\limits_{x\to2^-}\dfrac{|2-x|}{2x^2-5x+2}\).
| \(-\infty\) | |
| \(+\infty\) | |
| \(-\dfrac{1}{3}\) | |
| \(\dfrac{1}{3}\) |
Tính giới hạn \(\lim\limits_{x\to(-2)^+}\dfrac{\left|3x+6\right|}{x+2}\).
| \(-\infty\) | |
| \(3\) | |
| \(+\infty\) | |
| \(0\) |
Tính giới hạn \(\lim\limits_{x\to2^+}\dfrac{x-15}{x-2}\).
| \(-\infty\) | |
| \(+\infty\) | |
| \(-\dfrac{15}{2}\) | |
| \(1\) |
Tính \(\lim\limits_{x\to2}\dfrac{\sqrt[3]{3x^2-4}-\sqrt{3x-2}}{x+1}\).
| \(-\dfrac{3}{2}\) | |
| \(-\dfrac{2}{3}\) | |
| \(0\) | |
| \(+\infty\) |