Ngân hàng bài tập

Toán học: Hàm số

B

Cho   \(\displaystyle\int\limits_0^1\dfrac{2x+3}{2-x}\mathrm{\,d}x =a\cdot\ln2+b\) (với \(a,\,b\) là các số nguyên). Khi đó giá trị của \(a\) là

\(-7\)
\(7\)
\(5\)
\(-5\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_3^4\dfrac{1}{x^2-3x+2}\mathrm{\,d}x=a\ln 2+b\ln3\) \(\left(a,b\in\mathbb{Z}\right)\). Mệnh đề nào dưới đây đúng?

\(a+b+1=0\)
\(a+3b+1=0\)
\(a-2b=0\)
\(a+b=-2\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho \(I=\displaystyle\int\limits_0^1\dfrac{x}{1+x}\mathrm{\,d}x=a-\ln b\) với \(a,\,b\) là các số nguyên dương. Giá trị của \(a+b\) bằng

\(3\)
\(4\)
\(5\)
\(6\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Biết \(\displaystyle\int\limits_3^5 \dfrac{x^2+x+1}{x+1} \mathrm{\,d}x=a+\ln\dfrac{b}{2}\) với \(a\), \(b\) là các số nguyên. Tính \(S=a-2b\).

\(S=2\)
\(S=-2\)
\(S=5\)
\(S=10\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_{1}^{2}\dfrac{2}{x^2+2x}\mathrm{\, d}x=a\ln2+b\ln3\) với \(a,\,b\) là các số hữu tỉ. Giá trị của \(2a+3b\) bằng

\(5\)
\(1\)
\(-1\)
\(-5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết \(I=\displaystyle\int\limits_0^1\dfrac{x^2+2}{(x+2)^2}\mathrm{\,d}x=a\ln3+b\ln2+c\) với \(a\), \(b\), \(c\) là các số nguyên. Tính \(S=a+b+c\).

\(S=1\)
\(S=2\)
\(S=-1\)
\(S=0\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết \(\displaystyle\int\limits_0^1\dfrac{x^3+2x^2+3}{x+2}\mathrm{\,d}x=\dfrac{1}{a}+b\ln\dfrac{3}{2}\) với \(a,\,b>0\). Tính giá trị của \(S=a+2b\).

\(S=5\)
\(S=6\)
\(S=9\)
\(S=3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits^5_1\left|\dfrac{x-2}{x+1}\right| \mathrm{\,d}x=a\ln3+b\ln2+c\) với \(a,\,b,\,c\) là các số nguyên. Giá trị \(P=abc\) là

\(P=-36\)
\(P=0\)
\(P=18\)
\(P=-18\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Biết \(\displaystyle\int\limits_1^3\dfrac{x+2}{x}\mathrm{\,d}x=a+b\ln c\) với \(a\), \(b\), \(c\in\mathbb{Z}\), \(c<9\). Tính tổng \(S=a+b+c\).

\(S=6\)
\(S=7\)
\(S=5\)
\(S=8\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết \(I=\displaystyle\int\limits_1^2\dfrac{x^2+2x}{x+1}\mathrm{\,d}x=\dfrac{5}{a}+\ln b-\ln c\). Tính giá trị biểu thức \(S=a-b+c\).

\(S=7\)
\(S=3\)
\(S=-3\)
\(S=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho biết \(\displaystyle\int\limits_0^1\dfrac{x^2+x+1}{x+1}\ \mathrm{\,d}x=a+b\ln2\), trong đó \(a,\,b\) là hai số hữu tỉ, thì

\(a+b=\dfrac{1}{2}\)
\(a+b=\dfrac{3}{2}\)
\(a+b=-\dfrac{1}{2}\)
\(a+b=\dfrac{5}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết rằng \(\displaystyle\int\limits_2^3 \dfrac{5x+12}{x^2+5x+6}\mathrm{\,d}x=a\ln2+b\ln5+c\ln6\). Tính \(S=3a+2b+c\).

\(-11\)
\(-14\)
\(-2\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm tập xác định của hàm số \(y=\sqrt{2x^2-5x+2}\).

\(\left(-\infty;\dfrac{1}{2}\right]\)
\(\left[\dfrac{1}{2};2\right]\)
\(\left(-\infty;\dfrac{1}{2}\right]\cup[2;+\infty)\)
\([2;+\infty)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Giá trị lớn nhất của hàm số \(f(x)=\sqrt{(2x+3)(5-2x)}\) trên đoạn \(\left[-\dfrac{3}{2};\dfrac{5}{2}\right]\) là

\(2\)
\(4\)
\(8\)
\(2\sqrt{2}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Giá trị nhỏ nhất của hàm số \(f(x)=x+\dfrac{1}{x-2}\) trên khoảng \((2;+\infty)\) là

\(2\)
\(3\)
\(4\)
\(2\sqrt{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Giá trị nhỏ nhất của hàm số \(f(x)=x+\dfrac{8}{x}\) trên khoảng \((0;+\infty)\) là

\(2\)
\(4\sqrt{2}\)
\(6\)
\(\sqrt{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Giá trị lớn nhất của hàm số \(f(x)=\dfrac{2}{x^2-5x+9}\) bằng

\(\dfrac{11}{8}\)
\(\dfrac{11}{4}\)
\(\dfrac{4}{11}\)
\(\dfrac{8}{11}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tích phân \(\displaystyle\int\limits_1^2\dfrac{x^3-3x^2+2x}{x+1}\mathrm{\,d}x=a+b\ln2+c\ln3\) với \(a,\,b,\,c\in\mathbb{R}\). Chọn khẳng định đúng trong các khẳng định sau:

\(b<0\)
\(c>0\)
\(a<0\)
\(a+b+c>0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính tích phân \(I=\displaystyle\int\limits_0^1\dfrac{\mathrm{\,d}x}{x^2-9}\).

\(I=\dfrac{1}{6}\ln\dfrac{1}{2}\)
\(I=-\dfrac{1}{6}\ln\dfrac{1}{2}\)
\(I=\dfrac{1}{6}\ln2\)
\(I=\ln\sqrt[6]{2}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết \(\displaystyle\int\limits_1^2{\dfrac{\mathrm{\,d}x}{4x^2-4x+1}}=\dfrac{1}{a}+\dfrac{1}{b}\) thì \(a,\,b\) là nghiệm của phương trình nào sau đây?

\(x^2-5x+6=0\)
\(x^2+4x-12=0\)
\(2x^2-x-1=0\)
\(x^2-9=0\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự