Biết \(\displaystyle\int\limits_0^1\dfrac{dx}{\sqrt{x+1}+\sqrt{x}}=\dfrac{2}{3}\left(\sqrt{a}-b\right)\) với \(a,\,b\) là các số nguyên dương. Tính \(T=a+b\).
| \(T=7\) | |
| \(T=10\) | |
| \(T=6\) | |
| \(T=8\) |
Cho \(f,\,g\) là hai hàm số liên tục trên \([1;3]\) thỏa mãn điều kiện \(\displaystyle\int\limits_1^3\left[f(x)+3g(x)\right]\mathrm{\,d}x=10\) đồng thời \(\displaystyle\int\limits_1^3\left[2f(x)-g(x)\right]\mathrm{\,d}x=6\). Tính \(\displaystyle\int\limits_1^3\left[f(x)+g(x)\right]\mathrm{\,d}x\).
| \(9\) | |
| \(6\) | |
| \(7\) | |
| \(8\) |
Biết rằng hàm số \(f(x)=ax^2+bx+c\) thỏa mãn \(\displaystyle\int\limits_0^1f(x)\mathrm{\,d}x=-\dfrac{7}{2}\), \(\displaystyle\int\limits_0^2f(x)\mathrm{\,d}x=-2\) và \(\displaystyle\int\limits_0^3f(x)\mathrm{\,d}x=\dfrac{13}{2}\) (với \(a\), \(b\), \(c\in\mathbb{R}\)). Tính giá trị của biểu thức \(P=a+b+c\).
| \(P=-\dfrac{3}{4}\) | |
| \(P=-\dfrac{4}{3}\) | |
| \(P=\dfrac{4}{3}\) | |
| \(P=\dfrac{3}{4}\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{x^2+2x}{(x+3)^2}\mathrm{\,d}x=\dfrac{a}{4}-4\ln\dfrac{4}{b}\), với \(a,\,b\) là các số nguyên dương. Giá trị của biểu thức \(a^2+b^2\) bằng
| \(25\) | |
| \(41\) | |
| \(20\) | |
| \(34\) |
Biết \(\displaystyle\int\limits_2^3\dfrac{x^2-3x+2}{x^2-x+1}\mathrm{\,d}x=a\ln7+b\ln3+c\ln2+d\) (với \(a\), \(b\), \(c\), \(d\) là các số nguyên). Tính giá trị của biểu thức \(T=a+2b^2+3c^3+4d^4\).
| \(T=6\) | |
| \(T=7\) | |
| \(T=9\) | |
| \(T=5\) |
Cho \(\displaystyle\int\limits_2^3\dfrac{\mathrm{\,d}x}{(x+1)(x+2)}=a\ln2+b\ln3+c\ln5\) với \(a\), \(b\), \(c\) là các số thực. Giá trị của \(a+b^2-c^3\) là
| \(3\) | |
| \(5\) | |
| \(4\) | |
| \(6\) |
Cho \(\displaystyle\int\limits_1^3\dfrac{x+3}{x^2+3x+2}\mathrm{\,d}x=a\ln2+b\ln3+c\ln5\) với \(a\), \(b\), \(c\) là các số nguyên. Giá trị của \(a+b+c\) bằng
| \(0\) | |
| \(2\) | |
| \(3\) | |
| \(1\) |
Cho biết \(\displaystyle\int\limits_0^2\dfrac{x-1}{x^2+4x+3}\mathrm{\,d}x=a\ln5+b\ln3\), với \(a,\,b\in\mathbb{Q}\). Biểu thức \(T=a^2+b^2\) bằng
| \(13\) | |
| \(10\) | |
| \(25\) | |
| \(5\) |
Cho \(\displaystyle\int\limits_0^1\dfrac{2x^2+3x+1}{2x+3}\mathrm{\,d}x=a\ln5+b\ln3+c\). Tính \(T=a+b+2c\).
| \(T=3\) | |
| \(T=0\) | |
| \(T=1\) | |
| \(T=2\) |
Cho \(a,\,b\) là các số thực thỏa mãn \(\displaystyle\int\limits_0^1\dfrac{2abx+a+b}{(1+ax)(1+bx)}\mathrm{\,d}x=0\). Giá trị của \(S=ab+a+b\) bằng
| \(\left[\begin{array}{l}S=0\\ S=1\end{array}\right.\) | |
| \(\left[\begin{array}{l}S=-2\\ S=0\end{array}\right.\) | |
| \(\left[\begin{array}{l}S=1\\ S=-2\end{array}\right.\) | |
| \(\left[\begin{array}{l}S=-2\\ S=1\end{array}\right.\) |
Cho \(\displaystyle\int\limits_2^3\dfrac{x+2}{2x^2-3x+1}\mathrm{\,d}x=a\ln5+b\ln3+3\ln2\) (\(a,\,b\in\mathbb{Q}\)). Tính \(P=2a-b\).
| \(P=1\) | |
| \(P=7\) | |
| \(P=-\dfrac{15}{2}\) | |
| \(P=\dfrac{15}{2}\) |
Cho tích phân \(\displaystyle\int\limits_2^3{\dfrac{1}{x^3+x^2}\mathrm{\,d}x}=a\ln3+b\ln2+c\), với \(a,\,b,\,c\in\mathbb{Q}\). Tính \(S=a+b+c\).
| \(S=-\dfrac{2}{3}\) | |
| \(S=-\dfrac{7}{6}\) | |
| \(S=\dfrac{2}{3}\) | |
| \(S=\dfrac{7}{6}\) |
Cho \(\displaystyle\int\limits_1^2\left(x^2+\dfrac{x}{x+1}\right)\mathrm{\,d}x=\dfrac{10}{b}+\ln\dfrac{a}{b}\) với \(a,\,b\in\mathbb{Q}\). Tính \(P=a+b\).
| \(P=1\) | |
| \(P=5\) | |
| \(P=7\) | |
| \(P=2\) |
Cho \(\displaystyle\int\limits_1^2\dfrac{x}{(x+1)^2}\mathrm{\,d}x=a+b\ln2+c\ln3\), với \(a\), \(b\), \(c\) là các số hữu tỷ. Giá trị của \(6a+b+c\) bằng
| \(-2\) | |
| \(1\) | |
| \(2\) | |
| \(-1\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{3x-1}{x^2+6x+9}\mathrm{\,d}x=3\ln\dfrac{a}{b}-\dfrac{5}{6}\), trong đó \(a,\,b\) là hai số nguyên dương và \(\dfrac{a}{b}\) là phân số tối giản. Tính kết quả \(ab\).
| \(-5\) | |
| \(7\) | |
| \(12\) | |
| \(6\) |
Biết \(I=\displaystyle\int\limits_3^4\dfrac{\mathrm{\,d}x}{x^2+x}=a\ln2+b\ln3+c\ln5\) với \(a\), \(b\), \(c\) là các số nguyên. Tính \(S=a+b+c\).
| \(S=6\) | |
| \(S=2\) | |
| \(S=-2\) | |
| \(S=0\) |
Khẳng định nào sau đây sai?
| \(\displaystyle\int\cos x\mathrm{\,d}x=\sin x-C\) | |
| \(\displaystyle\int\dfrac{1}{\sin^2x}\mathrm{\,d}x=-\cot x+3C\) | |
| \(\displaystyle\int\sin x\mathrm{\,d}x=\cos x+C\) | |
| \(\displaystyle\int\dfrac{1}{\cos^2 x}\mathrm{\,d}x=\tan x-5+C\) |
Tìm nguyên hàm \(I=\displaystyle\int\left(2^x+3^x\right)\mathrm{\,d}x\).
| \(I=\dfrac{2^x}{\ln2}+\dfrac{3^x}{\ln3}+C\) | |
| \(I=\dfrac{\ln2}{2^x}+\dfrac{\ln3}{3^x}+C\) | |
| \(I=\dfrac{\ln2}{2}+\dfrac{\ln3}{3}+C\) | |
| \(I=-\dfrac{\ln2}{2}-\dfrac{\ln3}{3}+C\) |
Trong các khẳng định sau, khẳng định nào sai?
| \(\displaystyle\int\mathrm{\,d}x=x+2C\) | |
| \(\displaystyle\int x^n\mathrm{\,d}x=\dfrac{x^{n+1}}{n+1}+C\), (\(n\in\mathbb{Z}\)) | |
| \(\displaystyle\int0\mathrm{\,d}x=C\) | |
| \(\displaystyle\int\mathrm{e}^x \mathrm{\,d}x=\mathrm{e}^x-C\) |
Tìm họ nguyên hàm của hàm số \(f(x)=5^x+1\).
| \(\dfrac{5^x}{\ln5}+x+C\) | |
| \(5^x\ln5+x+C\) | |
| \(5^x\ln x+x+C\) | |
| \(5^x+x+C\) |