Cho \(\displaystyle\int\limits_2^3\dfrac{x+2}{2x^2-3x+1}\mathrm{\,d}x=a\ln5+b\ln3+3\ln2\) (\(a,\,b\in\mathbb{Q}\)). Tính \(P=2a-b\).
| \(P=1\) | |
| \(P=7\) | |
| \(P=-\dfrac{15}{2}\) | |
| \(P=\dfrac{15}{2}\) |
Cho \(\displaystyle\int\limits_{1}^{2}\dfrac{2}{x^2+2x}\mathrm{\, d}x=a\ln2+b\ln3\) với \(a,\,b\) là các số hữu tỉ. Giá trị của \(2a+3b\) bằng
| \(5\) | |
| \(1\) | |
| \(-1\) | |
| \(-5\) |
Biết rằng \(\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{\,d}x=a\ln5+b\ln2\), (\(a,\,b\in\mathbb{Z}\)). Mệnh đề nào sau đây đúng?
| \(a+b=0\) | |
| \(a-b=0\) | |
| \(a+2b=0\) | |
| \(2a-b=0\) |
Cho tích phân \(\displaystyle\int\limits_2^3{\dfrac{1}{x^3+x^2}\mathrm{\,d}x}=a\ln3+b\ln2+c\), với \(a,\,b,\,c\in\mathbb{Q}\). Tính \(S=a+b+c\).
| \(S=-\dfrac{2}{3}\) | |
| \(S=-\dfrac{7}{6}\) | |
| \(S=\dfrac{2}{3}\) | |
| \(S=\dfrac{7}{6}\) |
Cho \(\displaystyle\int\limits_1^2\left(x^2+\dfrac{x}{x+1}\right)\mathrm{\,d}x=\dfrac{10}{b}+\ln\dfrac{a}{b}\) với \(a,\,b\in\mathbb{Q}\). Tính \(P=a+b\).
| \(P=1\) | |
| \(P=5\) | |
| \(P=7\) | |
| \(P=2\) |
Cho \(\displaystyle\int\limits_1^2\dfrac{x}{(x+1)^2}\mathrm{\,d}x=a+b\ln2+c\ln3\), với \(a\), \(b\), \(c\) là các số hữu tỷ. Giá trị của \(6a+b+c\) bằng
| \(-2\) | |
| \(1\) | |
| \(2\) | |
| \(-1\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{3x-1}{x^2+6x+9}\mathrm{\,d}x=3\ln\dfrac{a}{b}-\dfrac{5}{6}\), trong đó \(a,\,b\) là hai số nguyên dương và \(\dfrac{a}{b}\) là phân số tối giản. Tính kết quả \(ab\).
| \(-5\) | |
| \(7\) | |
| \(12\) | |
| \(6\) |
Cho \(\displaystyle\int\limits_3^4\dfrac{1}{x^2-3x+2}\mathrm{\,d}x=a\ln 2+b\ln3\) \(\left(a,b\in\mathbb{Z}\right)\). Mệnh đề nào dưới đây đúng?
| \(a+b+1=0\) | |
| \(a+3b+1=0\) | |
| \(a-2b=0\) | |
| \(a+b=-2\) |
Cho biết \(\displaystyle\int\limits_0^1\dfrac{x^2+x+1}{x+1}\ \mathrm{\,d}x=a+b\ln2\), trong đó \(a,\,b\) là hai số hữu tỉ, thì
| \(a+b=\dfrac{1}{2}\) | |
| \(a+b=\dfrac{3}{2}\) | |
| \(a+b=-\dfrac{1}{2}\) | |
| \(a+b=\dfrac{5}{2}\) |
Cho \(\displaystyle\int\limits_0^1\dfrac{\mathrm{\,d}x}{x^2+3x+2}=a\ln2+b\ln3\) với \(a\), \(b\) là các số nguyên. Mệnh đề nào sau đây đúng?
| \(a+2b=0\) | |
| \(a-2b=0\) | |
| \(a+b=-2\) | |
| \(a+b=2\) |
Cho biết $$\displaystyle\int\dfrac{2x-13}{(x+1)(x-2)}\mathrm{\,d}x=a\ln|x+1|+b\ln|x-2|+C$$Mệnh đề nào sau đây đúng?
| \(a-b=8\) | |
| \(2a-b=8\) | |
| \(a+2b=8\) | |
| \(a+b=8\) |
Biết \(\displaystyle\int\limits_{1}^{2}\dfrac{\mathrm{d}x}{(x+1)(2x+1)}=a\ln2+b\ln3+c\ln5\). Khi đó giá trị \(a+b+c\) bằng
| \(1\) | |
| \(0\) | |
| \(2\) | |
| \(-3\) |
Biết rằng \(\displaystyle\int\limits_2^7\dfrac{x\mathrm{\,d}x}{x^2+1}=a\ln2-b\ln5\) với \(a,\,b\in\Bbb{Q}\). Giá trị của \(2a+b\) bằng
| \(\dfrac{3}{2}\) | |
| \(\dfrac{1}{2}\) | |
| \(1\) | |
| \(2\) |
Kết quả của phép tính tích phân \(\displaystyle\int\limits_{0}^{1}\ln(2x+1)\mathrm{\,d}x=a\ln3+b\), (\(a,\,b\in\mathbb{Q}\)) khi đó giá trị của \(ab^3\) bằng
| \(-\dfrac{3}{2}\) | |
| \(3\) | |
| \(1\) | |
| \(\dfrac{3}{2}\) |
Giả sử \(\displaystyle\int\limits_{3}^{5}\dfrac{\mathrm{d}x}{x^2-x}=a\ln5+b\ln3+c\ln2\). Tính giá trị biểu thức \(S=-2a+b+3c^2\).
| \(S=3\) | |
| \(S=6\) | |
| \(S=-2\) | |
| \(S=0\) |
Cho \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\left(\sin x\right)^2-5\sin x+6}\mathrm{\,d}x=a\ln\dfrac{4}{c}+b\), với \(a,\,b\) là các số hữu tỉ, \(c>0\). Tính tổng \(S=a+b+c\).
| \(S=3\) | |
| \(S=4\) | |
| \(S=0\) | |
| \(S=1\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{x^2+2x}{(x+3)^2}\mathrm{\,d}x=\dfrac{a}{4}-4\ln\dfrac{4}{b}\), với \(a,\,b\) là các số nguyên dương. Giá trị của biểu thức \(a^2+b^2\) bằng
| \(25\) | |
| \(41\) | |
| \(20\) | |
| \(34\) |
Cho \(\displaystyle\int\limits_1^3\dfrac{x+3}{x^2+3x+2}\mathrm{\,d}x=a\ln2+b\ln3+c\ln5\) với \(a\), \(b\), \(c\) là các số nguyên. Giá trị của \(a+b+c\) bằng
| \(0\) | |
| \(2\) | |
| \(3\) | |
| \(1\) |
Cho \(a,\,b\) là các số thực thỏa mãn \(\displaystyle\int\limits_0^1\dfrac{2abx+a+b}{(1+ax)(1+bx)}\mathrm{\,d}x=0\). Giá trị của \(S=ab+a+b\) bằng
| \(\left[\begin{array}{l}S=0\\ S=1\end{array}\right.\) | |
| \(\left[\begin{array}{l}S=-2\\ S=0\end{array}\right.\) | |
| \(\left[\begin{array}{l}S=1\\ S=-2\end{array}\right.\) | |
| \(\left[\begin{array}{l}S=-2\\ S=1\end{array}\right.\) |
Biết \(I=\displaystyle\int\limits_3^4\dfrac{\mathrm{\,d}x}{x^2+x}=a\ln2+b\ln3+c\ln5\) với \(a\), \(b\), \(c\) là các số nguyên. Tính \(S=a+b+c\).
| \(S=6\) | |
| \(S=2\) | |
| \(S=-2\) | |
| \(S=0\) |