Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=\dfrac{3-x}{\sqrt{4-3x-x^2}}$$
| \(\mathscr{D}=\mathbb{R}\setminus\{-4;1\}\) | |
| \(\mathscr{D}=[-4;1]\) | |
| \(\mathscr{D}=(-4;1)\) | |
| \(\mathscr{D}=(-\infty;4)\cup(1;+\infty)\) |
Tìm tập xác định của hàm số \(y=\sqrt{2x^2-5x+2}\).
| \(\left(-\infty;\dfrac{1}{2}\right]\) | |
| \(\left[\dfrac{1}{2};2\right]\) | |
| \(\left(-\infty;\dfrac{1}{2}\right]\cup[2;+\infty)\) | |
| \([2;+\infty)\) |
Tìm tập xác định của hàm số $y=\sqrt{\dfrac{x^2+4x+5}{2x^2+3x+1}}$.
| $\left(-\infty;-1\right]\cup\left[-\dfrac{1}{2};+\infty\right)$ | |
| $\left[-1;-\dfrac{1}{2}\right]$ | |
| $\left(-\infty;-1\right)\cup\left(-\dfrac{1}{2};+\infty\right)$ | |
| $\left(-1;-\dfrac{1}{2}\right)$ |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\log_3\left(x^2-x-2\right)\).
| \(\mathscr{D}=(-1;2)\) | |
| \(\mathscr{D}=(-\infty;-1)\cup(2;+\infty)\) | |
| \(\mathscr{D}=(2;+\infty)\) | |
| \(\mathscr{D}=(-\infty;-1]\cup[3;+\infty)\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\log_2\left(3x-x^2\right)\).
| \(\mathscr{D}=(0;+\infty)\) | |
| \(\mathscr{D}=(0;3)\) | |
| \(\mathscr{D}=[0;3]\) | |
| \(\mathscr{D}=\mathbb{R}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\log_2\left(3-2x-x^2\right)\).
| \(\mathscr{D}=(1;3)\) | |
| \(\mathscr{D}=(-1;3)\) | |
| \(\mathscr{D}=(-3;1)\) | |
| \(\mathscr{D}=(-\infty;-3)\cup(1;+\infty)\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\log_2\left(x^2-2x-3\right)\).
| \(\mathscr{D}=[-1;3]\) | |
| \(\mathscr{D}=(-1;3)\) | |
| \(\mathscr{D}=(-\infty;-1]\cup[3;+\infty)\) | |
| \(\mathscr{D}=(-\infty;-1)\cup(3;+\infty)\) |
Tập xác định của hàm số \(y=\log\left(x^2-1\right)\) là
| \((-\infty;-1)\cup(1;+\infty)\) | |
| \((-\infty;1)\) | |
| \((1;+\infty)\) | |
| \((-1;1)\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\ln\left(x^2-2x+1\right)\).
| \(\mathscr{D}=\Bbb{R}\) | |
| \(\mathscr{D}=(1;+\infty)\) | |
| \(\mathscr{D}=\varnothing\) | |
| \(\mathscr{D}=\Bbb{R}\setminus\{1\}\) |
Tập xác định của hàm số \(y=\left(x^2-4x\right)^{\mathrm{e}}\) là
| \(\Bbb{R}\) | |
| \(\Bbb{R}\setminus\{0;4\}\) | |
| \((-\infty;0)\cup(4;+\infty)\) | |
| \((0;4)\) |
Tập xác định của hàm số \(y=\left(x^2-3x-4\right)^{\tfrac{1}{3}}\) là
| \((-\infty;-1)\cup(4;+\infty)\) | |
| \(\Bbb{R}\setminus\{-1;4\}\) | |
| \((-1;4)\) | |
| \(\Bbb{R}\) |
Tập xác định của hàm số \(y=\left(x^2-5x+6\right)^{-\tfrac{1}{3}}\) là
| \((-\infty;2)\cup(3;+\infty)\) | |
| \(\Bbb{R}\setminus\{2;3\}\) | |
| \((2;3)\) | |
| \(\Bbb{R}\) |
Tập xác định của hàm số \(y=\left(x^2-x+1\right)^{\pi}\) là
| \(\Bbb{R}\setminus\{1\}\) | |
| \(\Bbb{R}\) | |
| \(\varnothing\) | |
| \((-\infty;-1)\cup(1;+\infty)\) |
Tập xác định của hàm số \(y=\left(x^2-3x+2\right)^{\pi}\) là
| \(\Bbb{R}\setminus\{1;2\}\) | |
| \((1;2)\) | |
| \((-\infty;1]\cup[2;+\infty)\) | |
| \((-\infty;1)\cup(2;+\infty)\) |
Tập xác định của hàm số $y=\dfrac{2}{\sqrt{2-\sin x}}$ là
| $(2;+\infty)$ | |
| $\mathbb{R}\setminus\{2\}$ | |
| $\mathbb{R}$ | |
| $[2;+\infty)$ |
Cho hàm số $y=\sqrt{\dfrac{1-\cos x}{1-\sin x}}$. Tập xác định của hàm số là
| $\mathbb{R}\setminus\{\pi+k\pi,\,k\in\mathbb{Z}\}$ | |
| $\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}$ | |
| $\{k2\pi,\,k\in\mathbb{Z}\}$ | |
| $\mathbb{R}\setminus\{k\pi,\,k\in\mathbb{Z}\}$ |
Cho hàm số $y=f(x)=x^3-3x^2+12$. Tìm $x$ để $f'(x)< 0$.
| $x\in(-2;0)$ | |
| $x\in(-\infty;-2)\cup(0;+\infty)$ | |
| $x\in(0;2)$ | |
| $x\in(-\infty;0)\cup(2;+\infty)$ |
Hàm số nào sau đây có tập xác định là $\mathbb{R}$?
| $y=\dfrac{x}{x^2-1}$ | |
| $y=3x^3-2|x|-3$ | |
| $y=3x^3-2\sqrt{x}-3$ | |
| $y=\dfrac{\sqrt{x}}{x^2+1}$ |
Tập xác định của hàm số $y=\dfrac{x+1}{\sqrt{x-1}(x-3)}$ là
| $(1;+\infty)\setminus\{3\}$ | |
| $\mathbb{R}\setminus\{3\}$ | |
| $[1;3)\cup(3;+\infty)$ | |
| $(1;+\infty)$ |
Tìm tập xác định của hàm số $$y=2\sqrt{6-3x}-\dfrac{x}{\sqrt{x^2+1}}$$
| $\mathscr{D}=(-\infty;2)$ | |
| $\mathscr{D}=[2;-\infty)$ | |
| $\mathscr{D}=(-\infty;2]\setminus\{\pm1\}$ | |
| $\mathscr{D}=(-\infty;2]$ |