Ngân hàng bài tập

Toán học

SS

Trong không gian với hệ tọa độ \(Oxyz\), cho \((\alpha)\) là mặt phẳng đi qua điểm \(N(1;2;3)\) và cắt ba tia \(Ox,\,Oy,\,Oz\) lần lượt tại \(A,\,B,\,C\) sao cho tam giác \(ABC\) đều. Phương trình mặt phẳng \((\alpha)\) là

\(x+2y+3z-6=0\)
\(x+y+z-6=0\)
\(3x+2y+z-6=0\)
\(x+2y+3z=0\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian với hệ tọa độ \(Oxyz\), cho \((\alpha)\) là mặt phẳng chứa trục \(Oy\) và cách \(A(1;3;5)\) một đoạn dài nhất. Phương trình mặt phẳng \((\alpha)\) là

\(x+5z-18\)
\(x+5z=0\)
\(3x+4z=0\)
\(x+5y=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi \((\alpha)\) là mặt phẳng đi qua điểm \(M(2;-1;2)\) và song song với mặt phẳng \((Q)\colon2x-y+3z+4=0\). Phương trình mặt phẳng \((\alpha)\) là

\(2x-y+2z-11=0\)
\(2x-y+3z+11=0\)
\(2x-y+3z-11=0\)
\(2x-y+3z-4=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi \((\alpha)\) là mặt phẳng đi qua \(3\) điểm \(A(1;0;0)\), \(B(0;-2;0)\), \(C(0;0;-3)\). Phương trình của mặt phẳng \((\alpha)\) là

\(6x-3y-2z+6=0\)
\(6x-3y+2z+6=0\)
\(6x-3y+2z-6=0\)
\(6x-3y-2z-6=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \((P)\colon-3x+2z-1=0\). Vectơ pháp tuyến \(\vec{n}\) của mặt phẳng \((P)\) là

\(\vec{n}=(-3;2;-1)\)
\(\vec{n}=(3;2;-1)\)
\(\vec{n}=(-3;0;2)\)
\(\vec{n}=(3;0;2)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2-2x+4y-4z-m=0\) có bán kính \(R=5\). Tính giá trị của \(m\).

\(m=-4\)
\(m=4\)
\(m=16\)
\(m=-16\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian với hệ tọa độ \(Oxyz\) cho hai điểm \(M(3;0;0)\), \(N(0;0;4)\). Tính độ dài đoạn thẳng \(MN\).

\(MN=7\)
\(MN=1\)
\(MN=5\)
\(MN=10\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian với hệ tọa độ \(Oxyz\) cho \(A(-1;2;4)\), \(B(-1;1;4)\), \(C(0;0;4)\). Tìm số đo của \(\widehat{ABC}\).

\(135^\circ\)
\(120^\circ\)
\(45^\circ\)
\(60^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hai số phức \(z_1=3-3i\), \(z_2=-1+2i\). Phần ảo của số phức \(w=z_1+2z_2\) là

\(-1\)
\(1\)
\(-7\)
\(7\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho số phức \(z\) thỏa mãn \(|z-1|=|z-i|\). Tìm môđun nhỏ nhất của số phức \(w=2z+2-i\).

\(3\sqrt{2}\)
\(\dfrac{3}{2\sqrt{2}}\)
\(\dfrac{3\sqrt{2}}{2}\)
\(\dfrac{3}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho số phức \(z\) thỏa mãn \(|z+i|=1\). Biết rằng tập hợp điểm biểu diễn số phức \(w=z-2i\) là một đường tròn. Tâm của đường tròn đó là

\(I(0;-1)\)
\(I(0;-3)\)
\(I(0;3)\)
\(I(0;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Giá trị của tham số thực \(m\) bằng bao nhiêu để bình phương số phức \(z=\dfrac{(m+9i)(1+i)}{2}\) là số thực?

Không có giá trị \(m\) thỏa
\(m=-9\)
\(m=9\)
\(m=\pm9\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Số phức liên hợp của số phức \(z=(1+i)^{15}\) là

\(\overline{z}=128+128i\)
\(\overline{z}=128-128i\)
\(\overline{z}=-1\)
\(\overline{z}=-128-128i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho số phức \(z\) thỏa mãn \(z+2\overline{z}=6-3i\) có phần ảo bằng

\(-3\)
\(3\)
\(3i\)
\(2i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức \(z=a+bi\). Số phức \(z^2\) có phần thực và phần ảo là

\(a^2+b^2\) và \(2a^2b^2\)
\(a+b\) và \(a^2b^2\)
\(a^2-b^2\) và \(2ab\)
\(a-b\) và \(ab\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức \(z\) thỏa mãn \(z=i(3+4i)\). Môđun của \(z\) là

\(|z|=7\)
\(|z|=\sqrt{5}\)
\(|z|=5\)
\(|z|=25\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính môđun của số phức \(z=4-3i\).

\(|z|=5\)
\(|z|=\sqrt{7}\)
\(|z|=7\)
\(|z|=25\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Điểm \(A\) trong hình vẽ trên biểu diễn cho số phức \(z\). Mệnh đề nào sau đây đúng.

Phần thực là \(-3\), phần ảo là \(2\)
Phần thực là \(-3\), phần ảo là \(2i\)
Phần thực là \(3\), phần ảo là \(-2i\)
Phần thực là \(3\), phần ảo là \(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tính thể tích khối tròn xoay được tạo bởi hình phẳng giới hạn bởi ba đường \(y=\sqrt{x}\), \(y=2-x\) và \(y=0\) quanh trục \(Ox\).

\(\dfrac{3\pi}{2}\)
\(\dfrac{5\pi}{6}\)
\(\pi\)
\(\dfrac{2\pi}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình phẳng giới hạn bởi đồ thị hàm số \(y=\mathrm{e}^x\), trục \(Ox\), hai đường thẳng \(x=0\), \(x=1\). Thể tích khối tròn xoay khi quay hình đó xung quanh trục hoành được cho bởi công thức

\(\left(\pi\displaystyle\int\limits_{0}^{1}\mathrm{e}^x\mathrm{\,d}x\right)^2\)
\(\pi\displaystyle\int\limits_{0}^{1}\mathrm{e}^{2x}\mathrm{\,d}x\)
\(\displaystyle\int\limits_{0}^{1}\mathrm{e}^{2x}\mathrm{\,d}x\)
\(\pi\left(\displaystyle\int\limits_{0}^{1}\mathrm{e}^x\mathrm{\,d}x\right)^2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự