Giới hạn \(\lim\limits_{x\to-\infty}\dfrac{3-2x}{\sqrt{x^2+5}}\) bằng
| \(2\) | |
| \(-2\) | |
| \(+\infty\) | |
| \(-\infty\) |
Giới hạn \(\lim\limits_{x\to+\infty}\dfrac{3-2x}{\sqrt{x^2+5}}\) bằng
| \(2\) | |
| \(-2\) | |
| \(+\infty\) | |
| \(-\infty\) |
Giới hạn \(\lim\limits_{x\to+\infty}\dfrac{3x^2-4x+1}{-2x^2+x+1}\) bằng
| \(-\dfrac{3}{2}\) | |
| \(-\dfrac{2}{3}\) | |
| \(\dfrac{1}{2}\) | |
| \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\dfrac{\sqrt[3]{x^3+2x^2+1}}{\sqrt{2x^2+1}}\).
| \(\dfrac{\sqrt{2}}{2}\) | |
| \(0\) | |
| \(-\dfrac{\sqrt{2}}{2}\) | |
| \(1\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\dfrac{\sqrt{4x^2-x+1}}{x+1}\).
| \(2\) | |
| \(-1\) | |
| \(-2\) | |
| \(+\infty\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\dfrac{2x-3}{\sqrt{x^2+1}-x}\).
| \(-2\) | |
| \(+\infty\) | |
| \(3\) | |
| \(-1\) |
Điểm nào sau đây không thuộc đồ thị hàm số $y=\dfrac{\sqrt{x^2-4x+4}}{x}$?
| $A(2;0)$ | |
| $B\left(3;\dfrac{1}{3}\right)$ | |
| $C(1;-1)$ | |
| $D(-1;-3)$ |
Hàm số nào sau đây có tập xác định là $\mathbb{R}$?
| $y=\dfrac{x}{x^2-1}$ | |
| $y=3x^3-2|x|-3$ | |
| $y=3x^3-2\sqrt{x}-3$ | |
| $y=\dfrac{\sqrt{x}}{x^2+1}$ |
Giới hạn \(\lim\limits_{x\to+\infty}\dfrac{1+3x-2x^2}{x^2+5}\) bằng
| \(2\) | |
| \(-2\) | |
| \(+\infty\) | |
| \(-\infty\) |
Giới hạn bên trái của hàm số \(f(x)=\dfrac{|2x+1|}{2x+1}\) tại \(x_0=-\dfrac{1}{2}\) bằng
| \(-1\) | |
| \(1\) | |
| \(-\dfrac{1}{2}\) | |
| Không tồn tại |
Hàm số \(f(x)=\begin{cases}\dfrac{\sqrt{1-3x+x^2}-\sqrt{1+x}}{x} &\text{khi }x\neq0\\
m &\text{khi }x=0\end{cases}\) liên tục tại \(x_0=0\) khi
| \(m=4\) | |
| \(m=-1\) | |
| \(m=3\) | |
| \(m=-2\) |
Giới hạn \(\lim\limits_{x\to3^-}\dfrac{x^2+2x-15}{|x-3|}\) bằng
| \(8\) | |
| \(-\infty\) | |
| \(-8\) | |
| Không tồn tại |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt{1+2x^2}-x\right)\).
| \(0\) | |
| \(+\infty\) | |
| \(\sqrt{2}-1\) | |
| \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\dfrac{2x^2+5x-3}{x^2+6x+3}\).
| \(-2\) | |
| \(+\infty\) | |
| \(3\) | |
| \(2\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}x\left(\sqrt{4x^2+7x}+2x\right)\).
| \(4\) | |
| \(-\infty\) | |
| \(6\) | |
| \(+\infty\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt[3]{3x^3-1}+\sqrt{x^2+2}\right)\).
| \(\sqrt[3]{3}+1\) | |
| \(+\infty\) | |
| \(\sqrt[3]{3}-1\) | |
| \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt{x^2+1}+x\right)\).
| \(0\) | |
| \(+\infty\) | |
| \(\sqrt{2}-1\) | |
| \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\left(|x|^3+2x^2+3|x|\right)\).
| \(0\) | |
| \(+\infty\) | |
| \(1\) | |
| \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to0^+}\dfrac{\sqrt{x^2+x}-\sqrt{x}}{x^2}\).
| \(0\) | |
| \(-\infty\) | |
| \(1\) | |
| \(+\infty\) |
Tính giới hạn \(\lim\limits_{x\to3^-}\dfrac{3-x}{\sqrt{27-x^3}}\).
| \(\dfrac{1}{3}\) | |
| \(0\) | |
| \(\dfrac{5}{3}\) | |
| \(\dfrac{3}{5}\) |