Ngân hàng bài tập

Giáo viên: Huỳnh Phú Sĩ

A

Biết \(\displaystyle\int\limits_0^1\dfrac{dx}{\sqrt{x+1}+\sqrt{x}}=\dfrac{2}{3}\left(\sqrt{a}-b\right)\) với \(a,\,b\) là các số nguyên dương. Tính \(T=a+b\).

\(T=7\)
\(T=10\)
\(T=6\)
\(T=8\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(f,\,g\) là hai hàm số liên tục trên \([1;3]\) thỏa mãn điều kiện \(\displaystyle\int\limits_1^3\left[f(x)+3g(x)\right]\mathrm{\,d}x=10\) đồng thời \(\displaystyle\int\limits_1^3\left[2f(x)-g(x)\right]\mathrm{\,d}x=6\). Tính \(\displaystyle\int\limits_1^3\left[f(x)+g(x)\right]\mathrm{\,d}x\).

\(9\)
\(6\)
\(7\)
\(8\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết rằng hàm số \(f(x)=ax^2+bx+c\) thỏa mãn \(\displaystyle\int\limits_0^1f(x)\mathrm{\,d}x=-\dfrac{7}{2}\), \(\displaystyle\int\limits_0^2f(x)\mathrm{\,d}x=-2\) và \(\displaystyle\int\limits_0^3f(x)\mathrm{\,d}x=\dfrac{13}{2}\) (với \(a\), \(b\), \(c\in\mathbb{R}\)). Tính giá trị của biểu thức \(P=a+b+c\).

\(P=-\dfrac{3}{4}\)
\(P=-\dfrac{4}{3}\)
\(P=\dfrac{4}{3}\)
\(P=\dfrac{3}{4}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết \(\displaystyle\int\limits_0^1\dfrac{x^2+2x}{(x+3)^2}\mathrm{\,d}x=\dfrac{a}{4}-4\ln\dfrac{4}{b}\), với \(a,\,b\) là các số nguyên dương. Giá trị của biểu thức \(a^2+b^2\) bằng

\(25\)
\(41\)
\(20\)
\(34\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết \(\displaystyle\int\limits_2^3\dfrac{x^2-3x+2}{x^2-x+1}\mathrm{\,d}x=a\ln7+b\ln3+c\ln2+d\) (với \(a\), \(b\), \(c\), \(d\) là các số nguyên). Tính giá trị của biểu thức \(T=a+2b^2+3c^3+4d^4\).

\(T=6\)
\(T=7\)
\(T=9\)
\(T=5\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_2^3\dfrac{\mathrm{\,d}x}{(x+1)(x+2)}=a\ln2+b\ln3+c\ln5\) với \(a\), \(b\), \(c\) là các số thực. Giá trị của \(a+b^2-c^3\) là

\(3\)
\(5\)
\(4\)
\(6\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_1^3\dfrac{x+3}{x^2+3x+2}\mathrm{\,d}x=a\ln2+b\ln3+c\ln5\) với \(a\), \(b\), \(c\) là các số nguyên. Giá trị của \(a+b+c\) bằng

\(0\)
\(2\)
\(3\)
\(1\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho biết \(\displaystyle\int\limits_0^2\dfrac{x-1}{x^2+4x+3}\mathrm{\,d}x=a\ln5+b\ln3\), với \(a,\,b\in\mathbb{Q}\). Biểu thức \(T=a^2+b^2\) bằng

\(13\)
\(10\)
\(25\)
\(5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_0^1\dfrac{2x^2+3x+1}{2x+3}\mathrm{\,d}x=a\ln5+b\ln3+c\). Tính \(T=a+b+2c\).

\(T=3\)
\(T=0\)
\(T=1\)
\(T=2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho \(a,\,b\) là các số thực thỏa mãn \(\displaystyle\int\limits_0^1\dfrac{2abx+a+b}{(1+ax)(1+bx)}\mathrm{\,d}x=0\). Giá trị của \(S=ab+a+b\) bằng

\(\left[\begin{array}{l}S=0\\ S=1\end{array}\right.\)
\(\left[\begin{array}{l}S=-2\\ S=0\end{array}\right.\)
\(\left[\begin{array}{l}S=1\\ S=-2\end{array}\right.\)
\(\left[\begin{array}{l}S=-2\\ S=1\end{array}\right.\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_2^3\dfrac{x+2}{2x^2-3x+1}\mathrm{\,d}x=a\ln5+b\ln3+3\ln2\) (\(a,\,b\in\mathbb{Q}\)). Tính \(P=2a-b\).

\(P=1\)
\(P=7\)
\(P=-\dfrac{15}{2}\)
\(P=\dfrac{15}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho tích phân \(\displaystyle\int\limits_2^3{\dfrac{1}{x^3+x^2}\mathrm{\,d}x}=a\ln3+b\ln2+c\), với \(a,\,b,\,c\in\mathbb{Q}\). Tính \(S=a+b+c\).

\(S=-\dfrac{2}{3}\)
\(S=-\dfrac{7}{6}\)
\(S=\dfrac{2}{3}\)
\(S=\dfrac{7}{6}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_1^2\left(x^2+\dfrac{x}{x+1}\right)\mathrm{\,d}x=\dfrac{10}{b}+\ln\dfrac{a}{b}\) với \(a,\,b\in\mathbb{Q}\). Tính \(P=a+b\).

\(P=1\)
\(P=5\)
\(P=7\)
\(P=2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho \(\displaystyle\int\limits_1^2\dfrac{x}{(x+1)^2}\mathrm{\,d}x=a+b\ln2+c\ln3\), với \(a\), \(b\), \(c\) là các số hữu tỷ. Giá trị của \(6a+b+c\) bằng

\(-2\)
\(1\)
\(2\)
\(-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết \(\displaystyle\int\limits_0^1\dfrac{3x-1}{x^2+6x+9}\mathrm{\,d}x=3\ln\dfrac{a}{b}-\dfrac{5}{6}\), trong đó \(a,\,b\) là hai số nguyên dương và \(\dfrac{a}{b}\) là phân số tối giản. Tính kết quả \(ab\).

\(-5\)
\(7\)
\(12\)
\(6\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết \(I=\displaystyle\int\limits_3^4\dfrac{\mathrm{\,d}x}{x^2+x}=a\ln2+b\ln3+c\ln5\) với \(a\), \(b\), \(c\) là các số nguyên. Tính \(S=a+b+c\).

\(S=6\)
\(S=2\)
\(S=-2\)
\(S=0\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Khẳng định nào sau đây sai?

\(\displaystyle\int\cos x\mathrm{\,d}x=\sin x-C\)
\(\displaystyle\int\dfrac{1}{\sin^2x}\mathrm{\,d}x=-\cot x+3C\)
\(\displaystyle\int\sin x\mathrm{\,d}x=\cos x+C\)
\(\displaystyle\int\dfrac{1}{\cos^2 x}\mathrm{\,d}x=\tan x-5+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm nguyên hàm \(I=\displaystyle\int\left(2^x+3^x\right)\mathrm{\,d}x\). 

\(I=\dfrac{2^x}{\ln2}+\dfrac{3^x}{\ln3}+C\)
\(I=\dfrac{\ln2}{2^x}+\dfrac{\ln3}{3^x}+C\)
\(I=\dfrac{\ln2}{2}+\dfrac{\ln3}{3}+C\)
\(I=-\dfrac{\ln2}{2}-\dfrac{\ln3}{3}+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong các khẳng định sau, khẳng định nào sai?

\(\displaystyle\int\mathrm{\,d}x=x+2C\)
\(\displaystyle\int x^n\mathrm{\,d}x=\dfrac{x^{n+1}}{n+1}+C\), (\(n\in\mathbb{Z}\))
\(\displaystyle\int0\mathrm{\,d}x=C\)
\(\displaystyle\int\mathrm{e}^x \mathrm{\,d}x=\mathrm{e}^x-C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm họ nguyên hàm của hàm số \(f(x)=5^x+1\).

\(\dfrac{5^x}{\ln5}+x+C\)
\(5^x\ln5+x+C\)
\(5^x\ln x+x+C\)
\(5^x+x+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự